matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenArgument
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Argument
Argument < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Argument: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 11.07.2009
Autor: equity

Aufgabe
Bestimmen sie

arg(-7+7*i)

Hallo, ich verstehe bei dieser Aufgabe, dass man hier das Argument in Polarkoordinaten darstellen möchte, aber ich verstehe nicht, ganz was man am Anfang gemacht hat. Warum wähle ich hier überhaupt den arctan?


Lösungsweg:

[mm] arg(-7+7*i)=arctan(\frac{7}{-7})+\pi [/mm]

[mm] arctan(-1)+\pi=-\frac{\pi}{4}+\pi=\frac{3*\pi}{4} [/mm]

[mm] \sqrt{7^2+7^2}=\sqrt{98}*e^{\frac{3*\pi*i}{4}} [/mm]

[mm] =\sqrt{98}*(cos(\frac{3*\pi}{4})+i*sin(\frac{3*\pi}{4})) [/mm]

        
Bezug
Argument: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Sa 11.07.2009
Autor: equity

Ach ja, noch eine Frage:

Wie kommt man auf die [mm] -\frac{\pi}{4},ohne [/mm] den Taschenrechner einsetzen zu müssen? Wenn ja, was mache ich denn da?

Bezug
                
Bezug
Argument: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Sa 11.07.2009
Autor: leduart

Hallo
Kannst du komplexe Zahlen in der gausschen Ebene eintragen?
Weisst du wie man aus der Zeichnung arg abliest? Dann sollte klar sein warum arctan.
2. Fuer ein paar Winkel sollte man tan, sin und cos wissen oder aus einer schnellen Zeichnung ablesen koennen. das sind 0,30,45, 60 Grad, entsprechend im Bogenmaass
Dazu sich fuer [mm] 45^o [/mm] ein rechwinkliges gleichschenkliges Dreieck denken oder aufmalen Schenkel a,  Hyp [mm] a*\wurzel{2} [/mm]
und ein gleichseitiges Dreieck mit Hoehe , da sind 30 und 60 drin Seite a Hoehe [mm] a/2*\wurzel{3}. [/mm]
Gruss leduart

Bezug
                        
Bezug
Argument: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 11.07.2009
Autor: equity

Hallo nochmal :)

Also ein paar sin-, cos- und tan-Werte habe ich mir ja aufgeschrieben und wie man eine komplexe Zahl einzeichnet weiss ich auch.

Heisst das, dass ich in meiner Tabelle einfach nur die Tan-Werte ablesen muss, um den arctan zu bekommen?

Sorry, wenn ich frage... bin halt kein Mathematiker...

Bezug
                                
Bezug
Argument: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Sa 11.07.2009
Autor: angela.h.b.


> Heisst das, dass ich in meiner Tabelle einfach nur die
> Tan-Werte ablesen muss, um den arctan zu bekommen?

Hallo,

wenn Du z.B. wissen willst,  was [mm] arctan(\wurzel{3}) [/mm] ist, dann mußt Du gucken, für welches [mm] \varphi [/mm] gilt  [mm] tan\phi=\wurzel{3}. [/mm]

der arctan ist doch (in einem gewissen Bereich) die Umkehrfuntion vom tan.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]