matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Informatik AlgorithmenArchimedes vs. Monte Carlo
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Informatik Algorithmen" - Archimedes vs. Monte Carlo
Archimedes vs. Monte Carlo < Algorithmen < Schule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Informatik Algorithmen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Archimedes vs. Monte Carlo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Fr 28.11.2014
Autor: Muskat

Hi,

kann mir jemand etwas über die Verlässlichkeit/Genauigkeit des Monte Carlo Verfahrens bzw. Archimedes-Methode in Bezug auf das Ergebnis (Pi) sagen.

        
Bezug
Archimedes vs. Monte Carlo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Fr 28.11.2014
Autor: chrisno

Da gibt es hier deutlich kompetentere als mich. Monte-Carlo konvergiert langsam. Bei der Genauigkeit wird erst einmal die Feinheit der Einteilung maßgeblich sein (vermute ich).
Archimedes dürfte schneller konvergieren, da solltest Du aber schauen, wie es mit der Rechengenauigkeit steht.

Bezug
                
Bezug
Archimedes vs. Monte Carlo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Mo 04.05.2015
Autor: bezier

Hallo,

Die Formeln von Ramanujan für Pi sind rechen Pi schnell und sind hoch-effizient.

Gruss.

Bezug
        
Bezug
Archimedes vs. Monte Carlo: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Sa 29.11.2014
Autor: Event_Horizon

Hallo!

Im Prinzip hat Chrisno schon alles wichtige gesagt.

Archimedes konvergiert monoton. Mit jeder Erhöhung der Eckenzahl nähert man sich weiter dem Wert von [mm] \pi [/mm] , überschreitet ihn aber nie. Wenn man neben dem inneren Vieleck (Ecken auf dem Kreis) auch das äußere (Seitenmitten auf dem Kreis) betrachtet, kennt man das Intervall, in dem [mm] \pi [/mm] liegen muß, und damit die bereits erreichte Präzision. Wenn du pi auf 5 Nachkommastellen bestimmen sollst, weißt du also sofort, wann du das erreicht hast.
Aber: Das Verfahren ist iterativ, man benutzt in jedem Schritt das Ergebnis des vorherigen. Rechenungenauigkeiten werden von Iteration zu Iteration mitgeschleppt, und führen so am Ende zu größeren Abweichungen.

MC ist dagegen ein statistischer Prozess. Es pendelt sich mit zunehmender Menge an Zufallszahlen um [mm] \pi [/mm] herum ein, driftet mal wieder weg, nähert sich an, überschreitet [mm] \pi, [/mm] entfernt sich wieder, und so weiter. Mit der Anzahl werden diese Schwankungen zwar immer geringer, aber du weißt nie genau, wie nah du denn bereits an [mm] \pi [/mm] bist. Vor allem: Jedes mal, wenn du die Berechnung wiederholst, sieht der "Tanz" um den wahren Wert anders aus.
(Mir kommt da grade die Idee, statt zufälliger Koordinaten ein Raster zu benutzen, das immer feiner wird.)
Die Rechengenauigkeit ist recht gut. Du berechnest für jedes Koordinatenpaar den Abstand zum Ursprung, und zählst dann, wie viele Punkte im Kreis liegen. Das Zählen ist fehlerfrei, und die geringen Fehler bei der Abstandsberechnung heben sich vermutlich auch noch ganz gut auf. Am Ende mußt du noch eine Division durchführen, das bringt nicht viel Ungenauigkeit.
Allerdings sind gute Zufallszahlen nicht so einfach zu erzeugen, ein Computer kann das gar nicht. Er kann nur Zahlenfolgen erzeugen, die möglichst zufällig aussehen. Wenn deine Zufallszahlen die Tendenz haben, näher bei 0 zu liegen, bekommst du zu viele Punkte im Kreis, und [mm] \pi [/mm] wird zu groß.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Informatik Algorithmen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]