matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationArbeit über Kurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Arbeit über Kurvenintegral
Arbeit über Kurvenintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbeit über Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 So 23.11.2014
Autor: Teryosas

Aufgabe
Ein Massenpunkt werde gegen eine Kraft [mm] f(\vec{x})=-D\vec{x}-mg\vec{e_{3}} [/mm] , [mm] \vec{x}\in\IR^3, [/mm] längs einer Schraubenlinie
[mm] \vec{\gamma}=\vektor{\rho cos (t) \\ \rho sin (t) \\ \bruch{h}{4\pi}t} [/mm] für 0 [mm] \le [/mm] t [mm] \le 4\pi [/mm]
bewegt. Hierbei sind [mm] D,m,g,\rho [/mm] und h positive reelle Konstanten, und es gilt [mm] \vec{e_{3}}=(0,0,1)^T. [/mm] Berechnen Sie dazu gehörige erforderliche Arbeit [mm] \ingetral_{\vec{\gamma}}^{}{F*d\vec{s}}. [/mm] Tun Sie dies sowohl unter Verwendung der Definition dieses Integraltyps sowie mit Hilfe des Potenzials.

Hey,

Also zum Integraltyp würde ich sagen das wir ein Kurvenintegral 2. Art haben was dazu führt das ich auf
[mm] \integral_{0}^{4\pi}{F(\vec{\gamma}(t))*\vec{\dot{\gamma}}dt} [/mm]
mit
[mm] F(\vec{\gamma}(t))=-D*\vektor{\rho cos (t) \\ \rho sin (t) \\ \bruch{h}{4\pi}t}-mg*\vektor{0\\0\\1}= -\vektor{D\rho cos (t) \\ D\rho sin (t) \\ D\bruch{h}{4\pi}t-mg} [/mm]
und
[mm] \vec{\dot{\gamma}}=\vektor{\rho sin (t) \\ -\rho cos (t) \\ \bruch{h}{4\pi}} [/mm]
stimmt das so?


Nur bei den Potentialen habe ich keinen wirklich Ansatz...
Vermutlich muss ich ersteinmal mit [mm] F(\vec{\gamma}(t)) [/mm] zeigen das es sich um ein Gradientenfeld handelt? Wenn ich beim [mm] \IR^3 [/mm] die 3 Ableitungensgleichungen bestimme die es zu erfüllen gilt, nach x,y,z käme ich ja überall auf 0???
Aber dann beim Potential steh ich ziemlich aufm Schlauch...

        
Bezug
Arbeit über Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 So 23.11.2014
Autor: notinX

Hallo,

> Ein Massenpunkt werde gegen eine Kraft
> [mm]f(\vec{x})=-D\vec{x}-mg\vec{e_{3}}[/mm] , [mm]\vec{x}\in\IR^3,[/mm]
> längs einer Schraubenlinie
>  [mm]\vec{\gamma}=\vektor{\rho cos (t) \\ \rho sin (t) \\ \bruch{h}{4\pi}t}[/mm]
> für 0 [mm]\le[/mm] t [mm]\le 4\pi[/mm]
>  bewegt. Hierbei sind [mm]D,m,g,\rho[/mm] und
> h positive reelle Konstanten, und es gilt
> [mm]\vec{e_{3}}=(0,0,1)^T.[/mm] Berechnen Sie dazu gehörige
> erforderliche Arbeit
> [mm]\ingetral_{\vec{\gamma}}^{}{F*d\vec{s}}.[/mm] Tun Sie dies
> sowohl unter Verwendung der Definition dieses Integraltyps
> sowie mit Hilfe des Potenzials.
>  Hey,
>  
> Also zum Integraltyp würde ich sagen das wir ein
> Kurvenintegral 2. Art haben was dazu führt das ich auf

[ok]

> [mm]\integral_{0}^{4\pi}{F(\vec{\gamma}(t))*\vec{\dot{\gamma}}dt}[/mm]
>  mit
>  [mm]F(\vec{\gamma}(t))=-D*\vektor{\rho cos (t) \\ \rho sin (t) \\ \bruch{h}{4\pi}t}-mg*\vektor{0\\0\\1}= -\vektor{D\rho cos (t) \\ D\rho sin (t) \\ D\bruch{h}{4\pi}t-mg}[/mm]

[notok]

[mm] $\ldots=-\left(\begin{array}{c} D\rho\cos t\\ D\rho\sin t\\ D\frac{h}{4\pi}t{\color{red}+}mg \end{array}\right)$ [/mm]

>  
> und
> [mm]\vec{\dot{\gamma}}=\vektor{\rho sin (t) \\ -\rho cos (t) \\ \bruch{h}{4\pi}}[/mm]
>  
> stimmt das so?

Nein, überprüfe die Ableitung nochmal.

>  
>
> Nur bei den Potentialen habe ich keinen wirklich Ansatz...
>  Vermutlich muss ich ersteinmal mit [mm]F(\vec{\gamma}(t))[/mm]
> zeigen das es sich um ein Gradientenfeld handelt? Wenn ich

Nein Du musst zeigen, dass folgendes gilt:
[mm] $\nabla\times f(\vec{x})=0$ [/mm]
Dann handelt es sich um ein Gradientenfeld.

> beim [mm]\IR^3[/mm] die 3 Ableitungensgleichungen bestimme die es zu
> erfüllen gilt, nach x,y,z käme ich ja überall auf 0???

Ich weiß nicht genau was Du meinst, kannst Du Dich genauer ausdrücken?

>  Aber dann beim Potential steh ich ziemlich aufm
> Schlauch...

Wie meinst Du das? Weißt Du nicht was ein Potential ist oder hast Du nur keine Ahnung wie man es berechnet?

Gruß,

notinX

Bezug
                
Bezug
Arbeit über Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 23.11.2014
Autor: Teryosas


> > und
> > [mm]\vec{\dot{\gamma}}=\vektor{\rho sin (t) \\ -\rho cos (t) \\ \bruch{h}{4\pi}}[/mm]
>  
> >  

> > stimmt das so?
>  
> Nein, überprüfe die Ableitung nochmal.

Ahh fuuu hab ausversehen integriert >.<

> >  

> >
> > Nur bei den Potentialen habe ich keinen wirklich Ansatz...
>  >  Vermutlich muss ich ersteinmal mit [mm]F(\vec{\gamma}(t))[/mm]
> > zeigen das es sich um ein Gradientenfeld handelt? Wenn ich
>
> Nein Du musst zeigen, dass folgendes gilt:
>  [mm]\nabla\times f(\vec{x})=0[/mm]
>  Dann handelt es sich um ein
> Gradientenfeld.
>  
> > beim [mm]\IR^3[/mm] die 3 Ableitungensgleichungen bestimme die es zu
> > erfüllen gilt, nach x,y,z käme ich ja überall auf 0???
>  
> Ich weiß nicht genau was Du meinst, kannst Du Dich genauer
> ausdrücken?
>  
> >  Aber dann beim Potential steh ich ziemlich aufm

> > Schlauch...
>
> Wie meinst Du das? Weißt Du nicht was ein Potential ist
> oder hast Du nur keine Ahnung wie man es berechnet?
>  

Wie ich das berechne in diesem Fall...
sobald cos, sin, tan iwo aufkreuzen stiftet das nur Verwirrung in meinem Kopf :/
und über Google habe ich mal noch keine entsprechende Beispielaufgabe/Youtubevideo gefunden woran ich mich lang hangeln könnte :/

Bezug
                        
Bezug
Arbeit über Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 So 23.11.2014
Autor: notinX


> Wie ich das berechne in diesem Fall...

Du suchst ja quasi eine Stammfunktion. Also integriere alle drei Komponenten des Vektorfeldes nach der entsprechenden Koordinate. Für die erste also:
[mm] $\int Dx\,\mathrm{d}x=-\frac{Dx^2}{2}+c(y,z)$ [/mm]
Die Integrationskonstante kann in diesem Fall von y und z abhängen. Das machst Du für alle drei Komponenten und bestimmst dann die Konstante so, dass es für alle passt und dass der Gradient der Funktion dem Vektorfeld entspricht.

> sobald cos, sin, tan iwo aufkreuzen stiftet das nur
> Verwirrung in meinem Kopf :/

Ganz ruhig, sin und cos sind eigentlich ziemlich umgängliche Funktionen - gerade wenns um Differenzieren und Integrieren geht.

>  und über Google habe ich mal noch keine entsprechende
> Beispielaufgabe/Youtubevideo gefunden woran ich mich lang
> hangeln könnte :/

Verzweifelst Du an allen Herausforderungen des Lebens wenn es zum entsprechenden Sacherhalt kein youtube-Video gibt? :P
Ich weiß ja nicht, nach was Du gesucht hast, aber kuk mal zu welchem Ergebnis die Suche nach 'potential aus vektorfeld bestimmen' erscheint (gleich als erster Eintrag):
http://www.mathematik.uni-ulm.de/numerik/teaching/ss10/Analysis2/Uebungen/potential.pdf

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]