matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikArbeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mechanik" - Arbeit
Arbeit < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbeit: Idee
Status: (Frage) beantwortet Status 
Datum: 12:59 Fr 13.04.2012
Autor: Levit

Aufgabe
Berechnen Sie die Kraftfelder [mm] $\vec F_1(\vec r)=-k\vec [/mm] r$ und [mm] $\vec F_2(\vec r)=\vec [/mm] a [mm] \times \vec [/mm] r$ verrichtet werden muss [mm] ($\vec [/mm] a =(a,0,0)$ und $a,k=konstant$), um einen Massepunkt vom Ort [mm] $(0,y_1,z_1)$ [/mm] zum Ort [mm] $(0,y_2,z_2)$ [/mm] in der $y-z$-Ebene entlang zweier paralleler Strecken zur $y$. und $z$-Achse zu verschieben

a) zuerst auf einem Weg parallel zur $y$-Achse und dann parallel zur $z$-Achse,
b)zuerst auf einem Weg parallel zur $z$-Achse und dann parallel zur $y$-Achse.

Hallo an alle. Also ich habe folgendes Problem. Mir fehlt etwas das Verständnis für die Berechnung der Arbeit im ortsabhängigen Kraftfeld, welches [mm] $F_2$ [/mm] ja ist. Für das erste Kraftfeld sind meiner Berechnung nach die Arbeit in den beiden Teilaufgaben gleich, mit jeweils [mm] $W=\bruch{k}{2}(y_1^2-y_2^2+z_1^2-z_2^2)$. [/mm] Berechnet habe ich dies mit [mm] $W=\integral_{r_1}^{r_2} \vec F(\vec r)\,d\vec [/mm] r$, wobei [mm] $r_1,r_2$ [/mm] dann entsprechend der Achsen [mm] $y_1,y_2$ [/mm] bzw. [mm] $z_1,z_2$ [/mm] sind. Dann komme ich halt auf obiges Ergebnis, wenn ich [mm] $\vec F_1$ [/mm] einsetze.

Bei [mm] $\vec F_2$ [/mm] müssten meiner Meinung nach verschiedene Arbeiten für die Teilaufgaben rauskommen, nur erhalte ich das nicht wenn ich mit [mm] $W=\integral_{r_1}^{r_2} \vec F(\vec r)\,d\vec [/mm] r$ rechne. Hat jemand ne Idee, wo mein Fehler ist?

        
Bezug
Arbeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 13.04.2012
Autor: Event_Horizon

Hallo!

Mir ist nicht ganz klarm was du da gemacht hast, aber was du machen mußt, ist folgendes:

Der erste Pfad besteht aus zwei Einzelwegen:

[mm]\vektor{x_1\\ y_1\\ 0}\to\vektor{x_2\\ y_1\\ 0}\to\vektor{x_2\\ y_2\\ 0}[/mm]

So ein Wegstück [mm] d\vec{r} [/mm] des ersten Weges sieht daher so aus:

[mm] d\vec{r}=\vektor{1\\0\\0}\,dx [/mm]


Multiplizier das mit [mm] \vec{F}(\vec{r}) [/mm] und integrier das über x. Auf dem ersten Weg gilt konstant [mm] y=y_1, [/mm] was du ebenfalls einsetzt.

Damit hast du die Energie für den ersten Weg, anschließend brauchst du den für den zweiten Weg mit dem entsprechenden [mm] d\vec{r} [/mm] für Integration in y-Richtung. Denk dran, der Weg liegt entlang  [mm] x=x_2 [/mm] .


Der andere Pfad unterscheidet sich darin, welche der Konstanten wann welchen Wert besitzt, und sollte für das Feld mit der Rotation einen anderen Wert annehmen.





Bezug
                
Bezug
Arbeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:56 Fr 13.04.2012
Autor: Levit

Also würde die Arbeit für [mm] $\vec F_2$ [/mm] entlang der $y$-Achse wie folgt aussehen:

[mm] $W_y=\integral_{y_1}^{y_2} [/mm] a [mm] \times \vec r\, d\vec [/mm] r [mm] =\integral_{y_1}^{y_2} \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ y \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy=\integral_{y_1}^{y_2} \begin{pmatrix} 0 \\ az_1 \\ ay \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy=\integral_{y_1}^{y_2} az_1\, [/mm] dy [mm] =az_1(y_2-y_1)$. [/mm]

Und dann für die $z$-Achse vom Punkt [mm] $y_2$ [/mm] aus.

Wirds so gemacht?
Danke schon mal

Damit hätte ich für erst entlang der $y$- und dann entlang der $z$-Achse [mm] $W=az_1(y_2-y_1) +ay_2(z_2-z_1)$ [/mm]
und für erst entlang der $z$- und dann entlang der $y$-Achse [mm] $W=az_2(y_2-y_1) +ay_1(z_2-z_1)$ [/mm]


Bezug
                        
Bezug
Arbeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Fr 13.04.2012
Autor: MathePower

Hallo Levit,

> Also würde die Arbeit für [mm]\vec F_2[/mm] entlang der [mm]y[/mm]-Achse
> wie folgt aussehen:
>  
> [mm]W_y=\integral_{y_1}^{y_2} a \times \vec r\, d\vec r =\integral_{y_1}^{y_2} \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ y \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy=\integral_{y_1}^{y_2} \begin{pmatrix} 0 \\ az_1 \\ ay \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy=\integral_{y_1}^{y_2} az_1\, dy =az_1(y_2-y_1)[/mm].


Hier muss es doch lauten:

[mm]W_y=\integral_{y_1}^{y_2} a \times \vec r\, d\vec r =\integral_{y_1}^{y_2} \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ y \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy=\integral_{y_1}^{y_2} \begin{pmatrix} 0 \\ \red{-}az_1 \\ ay \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\,dy[/mm].


>  
> Und dann für die [mm]z[/mm]-Achse vom Punkt [mm]y_2[/mm] aus.
>  
> Wirds so gemacht?
> Danke schon mal
>  
> Damit hätte ich für erst entlang der [mm]y[/mm]- und dann entlang
> der [mm]z[/mm]-Achse [mm]W=az_1(y_2-y_1) +ay_2(z_2-z_1)[/mm]
>  und für erst
> entlang der [mm]z[/mm]- und dann entlang der [mm]y[/mm]-Achse [mm]W=az_2(y_2-y_1) +ay_1(z_2-z_1)[/mm]
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]