matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenAquivalenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Aquivalenzrelation
Aquivalenzrelation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aquivalenzrelation: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:35 Mi 02.11.2011
Autor: sunnygirl26

Aufgabe
Sei R := [mm] \{(x,y) \in \IZ x \IZ | x^2-y2=0 mod 4 \} [/mm]
1. Zeige, dass R eine Aquivalenzrelation auf Z ist.
2. Bestimme die Aquivalenzklassen und ein Vertretersystem
3. Finde eine Abbildung f : [mm] \IZ \to \IZ [/mm] so dass [mm] \sim [/mm] (Z/ [mm] \sim [/mm] f) = R

Also zu eins muss ich ja zeigen, dass R transitiv reflexiv und symmetrisch ist. Ichweiß nur leider nicht geau was das jeweils bedeutet.
Reflexiv bedeutet, dass mRm, also das m in relation zu m steht.
Transitiv, dass wenn m in Relation zu n steht und n in relationn zu o steht daraus folgt das m in relation zu o steht.
Symmetrisch heißt, dass wenn m in relation zu steht daraus immer folgt, dass n in relation zu m steht. Aber ich weiß nict was dieses in Relation stehen zu bedeuten hat.


        
Bezug
Aquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 02.11.2011
Autor: hippias

Du weisst es ja doch!
Also Du koenntest so vorgehen:
Refelxivitaet: Wegen [mm] $m^{2}-m^{2}= 0\equiv [/mm] 0$ mod $4$ gilt $mRm$.
Symmetrie: Wenn $mRn$, dann ist [mm] $m^{2}-n^{2}\equiv [/mm] 0$ mod $4$. Dann ist auch [mm] $n^{2}-m^{2}\equiv [/mm] 0$ mod $4$,also ...
Viel Spass beim Ausknobeln vom Rest.

Bezug
                
Bezug
Aquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Mi 02.11.2011
Autor: sunnygirl26

vielen dank für die Antwort :), das hab ich jetzt auch so gemacht und verstanden , aber wie bestimme ich denn die Äquivalenzklasse und ein Vertretersystem und was mache ich mit denen?

Bezug
                        
Bezug
Aquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Mi 02.11.2011
Autor: fred97

Für z [mm] \in \IZ [/mm] ist die Äquivalenzklasse von z gegeben durch

               [mm] K_z=\{ k \in \IZ: k ~R ~ z\} [/mm]

FRED

Bezug
                                
Bezug
Aquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Mi 02.11.2011
Autor: sunnygirl26

und was ist dabei k, bzw z.

ich hab in meinem skript stehen, dass die Äquivalenzklasse durch
[m]R={n [mm] \in [/mm] N : nRm}
setze ich für n, m in dem Fall also einfach [mm] x^2 [/mm] bzw. [mm] y^2 [/mm]  also [m]R = {y [mm] \in [/mm] N: [mm] x^2-y^2 [/mm] = 0 mod 4}. aber dann weiß ich ja immer noch nicht was m [m]r ist ....

Bezug
                                        
Bezug
Aquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 02.11.2011
Autor: hippias

Die Aequivalenzklasse bezueglich $R$ von z.B. $1$ ist die Menge [mm] $\{y\in \IZ| 1^{2}-y^{2}= 0 mod 4\}= \{1,3\}$. [/mm] Ein Repraesentantensystem ist eine Menge, die von jeder Aequivalenzklasse genau ein Element enthaelt.

Bezug
                                                
Bezug
Aquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:19 Do 03.11.2011
Autor: tobit09

Hallo,

> Die Aequivalenzklasse bezueglich [mm]R[/mm] von z.B. [mm]1[/mm] ist die Menge
> [mm]\{y\in \IZ| 1^{2}-y^{2}= 0 mod 4\}= \{1,3\}[/mm].

Nein, es gilt [mm] $\{y\in\IZ|1^{2}-y^{2}= 0 \operatorname{mod} 4\}=2\IZ+1$. [/mm]

Viele Grüße
Tobias

Bezug
                                                        
Bezug
Aquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:42 Do 03.11.2011
Autor: hippias

Danke fuer die Richtigstellung: Offenbar habe ich [mm] \IZ_{4}$ [/mm] gerechnet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]