matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Approximierung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Approximierung
Approximierung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:53 Mo 15.03.2010
Autor: toteitote

Aufgabe
Consider the function [mm] F(p,q)=3p^{\bruch{1}{4}}q^{\bruch{3}{4}} [/mm] of two variables p and q. By using a linear approximation about (1,1), we find that the approximate value of [mm] F(\bruch{5}{6},\bruch{7}{6}) [/mm] is equal to...

a) 3,200

b) 3,225

c) 3,250

d) 3,275

c) ist richtig und ich bekomme auch in einem Teil meiner Rechnung c) raus, aber da scheinen noch denkfehler zu sein in der Rechnung. Kann mir bitte jemand sagen, was ich da falsch mache bzw. was ich warum an der Formel verändern muss, um auf das gewünschte Ergebnis zu kommen?

Ich nehme die Formel für die Approximierung von 2 Variablen:

[mm] f(x,y)\approx f(a,b)+(f_{1}'(a,b))(x-a)+(f_{2}'(a,b))(y-b) [/mm] mit

[mm] f_{1}'(p,q)=0,75p^{-0,75}q^{0,75} [/mm] und

[mm] f_{2}'(p,q)=2,25p^{0,25}q^{-0,25} [/mm]


MfG Tiemo


        
Bezug
Approximierung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Mo 15.03.2010
Autor: supermarche

Hi,

soweit wie ich das überschaue, kommt doch genau 3.250 raus =) Du solltest nur genau die Werte einsetzen, die gegeben sind, d.h. (a,b) = (1,1) und dann $ [mm] F\left(\bruch{5}{6},\bruch{7}{6}\right)\approx f(a,b)+(f_{1}'(a,b))(x-a)+(f_{2}'(a,b))(y-b) [/mm] $

LG
supermarche

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]