matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraApproximieren eines Vektors
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Approximieren eines Vektors
Approximieren eines Vektors < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximieren eines Vektors: Frage
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 22.01.2005
Autor: iceT18

Hallo,

Wer kann mir helfen, hab folgende Aufgabe:

Vorgelegt sei eine Matrix A und ein mit der Potenzmethode gewonnener iterierter Vektor x5. Damit approximiere man einen dominanten Eigenvektor auf 3 Dezimalen genau, dessen erste Komponente 1 ist, und den dominanten Eigenwert. Man vergleiche das Ergebnis mit den exakten Resultaten.


A=  [mm] \pmat{ 1.5 & 0.5 \\ 2.0 & 3.0 } [/mm] , x5= [mm] \pmat{ 60.625 \\ 239.500 } [/mm]

Wie löse ich das ? Versteh das ganze irgendwie nicht! Wie ist der Lösungsweg? Was muss ich tun?

Danke
mfg
IceT

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Approximieren eines Vektors: bitte korrekturlesen
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 22.01.2005
Autor: DaMenge

Hi IceT,

ist das nicht eher fürs Numerik-Forum?

ich denke, du sollst es so machen:
1)teile x5 durch 60,625 - den nennen wir x5' - dadurch steht in der ersten Komponente eine 1
2)multipliziere A mit x5 (oder x5' sollte eigentlich egal sein), dann teile wieder durch die erste Komponente -> man erhält x6'
3)vergleiche die zweiten Komponenten von x5' und x6' wenn die Differenz mehr als 1/1000 ist, dann iteriere das weiter...

irgendwann hast du einen x'_n deren zweite Komponente weniger als 3 Dezimalstellen von der vorherige unterscheidet, nun musst du nur noch den genäherten Eigenwert errechnen : Ax=u*x
also wenn du x'_n nochmal an A multiplizierst erhälst du den Eigenwertnäherung in der ersten Komponente von $ [mm] x_{n+1} [/mm] $

wie man die genauen EigenWerte bestimmt weißt du doch, oder?

viele Grüße
DaMenge

Bezug
                
Bezug
Approximieren eines Vektors: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:36 So 23.01.2005
Autor: iceT18

Ja, wie ich die genauen EW berechne weis ich!

Nun steh ich aber vor folgendem Problem:

Ich hab die erste Komponente auf 1 gebracht und mit der Matrix A multipliziert -> das Ergebnis ist  [mm] \pmat{ 1 \\ 3.950} [/mm]

Beim weiteren Multiplizerien mit A und 1 setzen, bekomme ich
[mm] \pmat{ 1 \\ 3.985} [/mm] -> beim nächsten Mal [mm] \pmat{ 1 \\ 3.995}. [/mm]

Wie lange muss ich das machen?
"vergleiche die zweiten Komponenten von x5' und x6' wenn die
Differenz mehr als 1/1000 ist, dann iteriere das
weiter..."
d.h. bis auf Unterschied 0,001 oder? Aber das Ergebnis wird ja immer größer!!!

THX IceT

Bezug
                        
Bezug
Approximieren eines Vektors: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 So 23.01.2005
Autor: DaMenge

Hi Ice,

ja, der wird noch etwas größer, denn $ [mm] \vektor{1\\4} [/mm] $ wäre der exakte Eigenvektor, gegen den die Folge strebt - also noch ein paar mal
:-)

viele Grüße
DaMenge

Bezug
                                
Bezug
Approximieren eines Vektors: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 So 23.01.2005
Autor: slamo

THX

Danke für deine Hilfe.
:-)

mfg
slamo (IceT)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]