matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenApproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Approximation
Approximation < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Di 09.07.2013
Autor: ElizabethBalotelli

Aufgabe
Welchen Fehler macht man höchstens, wenn man sin(x) auf dem Intervall [mm] (0,\pi/2) [/mm] durch [mm] x-(x^3/6) [/mm] annähert?

Leider stehe ich gerade völlig auf dem Schlauch. Hat das was mit Taylor Approximierung zu tun und irgendwas mit dem Restglied? Muss ich auch die Taylorreihe bestimmen?
Wäre nett wenn mir jemand helfen könnte =)
Danke!

        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Di 09.07.2013
Autor: M.Rex

Hallo
> Welchen Fehler macht man höchstens, wenn man sin(x) auf
> dem Intervall [mm](0,\pi/2)[/mm] durch [mm]x-(x^3/6)[/mm] annähert?

Ich würde hier das Maximum von [mm] h(x):=\sin(x)-\left(x-\frac{1}{6}x^{3}\right) [/mm] auf dem gegebenen Intervall bestimmen.

Marius

Bezug
        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Di 09.07.2013
Autor: fred97


> Welchen Fehler macht man höchstens, wenn man sin(x) auf
> dem Intervall [mm](0,\pi/2)[/mm] durch [mm]x-(x^3/6)[/mm] annähert?
>  Leider stehe ich gerade völlig auf dem Schlauch. Hat das
> was mit Taylor Approximierung zu tun und irgendwas mit dem
> Restglied? Muss ich auch die Taylorreihe bestimmen?
>  Wäre nett wenn mir jemand helfen könnte =)
>  Danke!


Nach dem Satz von Taylor ist für  [mm]x \in (0,\pi/2)[/mm]:

$|sin(x)-( [mm] x-(x^3/6))| =\bruch{|sin(\xi)|}{24}*x^4,$ [/mm]

wobei [mm] \xi \in (x,\pi/2) [/mm]

FRED

Bezug
                
Bezug
Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Di 09.07.2013
Autor: ElizabethBalotelli

Ok und woher weiß ich jetzt welchen Fehler man höchstens macht, bei dieser Annäherung? In wie fern antwortet die Taylorreihe auf diese Frage? Oder habe ich es mit einer, wie M.Rex meint, Extremwertaufgabe zu tun?

Bezug
                        
Bezug
Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Di 09.07.2013
Autor: mbra771

Hallo,

Die Taylorreihe stellt eine Annäherung an den sinus dar. Zufällig ist das in der Frage angegebene Polynom gerade das 3. Taylorpolynom im Entwicklungspunkt 0.

Der zu berechnende Fehler kann einfach ausgerechnet werden, indem du guckst, an welchem Punkt das Polynom vom Sinus am weitesten entfernt ist.

Sehr schön kann man sich das bei Wolfram Alpha ansehen.

Link:
http://www.wolframalpha.com/input/?i=taylor+sin%28x%29+n%3D0

hoffe das funktioniert ;-)
Im Entwicklungspunkt Ist der Fehler der Aprox. am kleinsten.

Grüße,
Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]