matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungApproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Approximation
Approximation < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: Lineare Approximation
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 14.04.2008
Autor: green_apple

Aufgabe
[mm] \wurzel{0,99} [/mm]
Lineare Approximation, der Entwicklungspunkt [mm] x_{0} [/mm] ist geeignet zu bestimmen [mm] (\Delta [/mm] x ist relativ klein).

Lineare Approximation heißt ja, dass ich in den Punkt [mm] x_{0} [/mm] eine Tangente lege, oder? Also eine Gerade der Form y=kx+d...
Ich weiß, dass ich die Steigung mit der 1. Ableitung berechnen kann, aber welche Funktion soll ich dafür verwenden und wie komm ich auf [mm] x_{0}? [/mm] Nehm ich einfach irgendeine relativ kleine Zahl an?
Bitte um Hilfe, ich komm da einfach nicht weiter :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 14.04.2008
Autor: leduart

Hallo
nimm die fkt [mm] f(x)=\wurzel{1+x} [/mm] Tangente bei x=0 und geh auf der das Stück 0,1 nach links.
gruss leduart

Bezug
                
Bezug
Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 14.04.2008
Autor: green_apple

Hallo,
danke für deine schnelle Hilfe. Deine Idee scheint zu stimmen, aber wie kommt man auf diese Funktion? Und woher weiß man, dass der Entwicklungspunkt [mm] x_{0} [/mm] 0 ist?

Bezug
                        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 14.04.2008
Autor: leduart

Hallo
Du willst [mm] \wurzel{0,99} [/mm] welches ist die nächste Zahl. aus der man die Wurzel ohne TR kann? klar 1 [mm] \wurzel{1}=1 [/mm]  naja, also muss ich f(o)=1 nehmen, also [mm] \wurzel{1+x} [/mm]
wäre [mm] \wurzel{4,02} [/mm] gewesen hätt ich [mm] \wurzel{4+x} [/mm] genommen mit f(0)=2
oder ich hätte 4 ausgeklammert und [mm] 2*\wurzel [/mm] {1+0,02/4} gerechnet, was besser wäre.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]