matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesApproximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Approximation
Approximation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: Approximation von e "ohne Tasc
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 11.12.2007
Autor: Mirage.Mirror

Aufgabe
Approximation von e "ohne Taschenrechner"

Bestimmen Sie eine Zahl a [mm] \in \IR [/mm] mit

|a-e| < 0.5  * 10^-3

wobei

e=exp(1)= [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} [/mm]



Hallo.
Wenn mir jemand sagen kann, wie ich hier vorgehen muss würde ich mich sehr freuen. Ich hab leider irgendwie keine Ansatzidee, was ich hier tun muss. Natürlich hätte ich normalerweise einfach alles in den Taschenrechner eingegeben, aber so kommt es mir vor, als müss eich eine Formel auflösen, also

[mm] |a-\summe_{k=0}^{\infty} \bruch{1}{k!}| [/mm] <  0.5  * 10^-3.
Jedoch komme ich nicht so recht weiter bei der Auflösung, wegen der Summe, von der ich zwar das Ergebnis weiß (e eben) aber mit diesem darf ich ja nicht rechnen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 02:35 Mi 12.12.2007
Autor: Zneques

Hallo,

Ich denke mal, du sollst e mit der Reihe ausrechnen. (+- diesem Fehler)
D.h.
[mm] a_{0}=1, a_{1}=1+1=2, a_{2}=1+1+\bruch{1}{2}=2,5, a_{3}=1+1+\bruch{1}{2}+\bruch{1}{6}=2,6\overline{6} [/mm]
u.s.w.

Das Problem ist nun zu wissen wann die Ungleichung erfüllt ist und man aufhören darf.
|a-e|=| [mm] \summe_{k=0}^{n} \bruch{1}{k!}-\summe_{k=0}^{\infty} \bruch{1}{k!} [/mm] |=| [mm] \summe_{k=n+1}^{\infty} \bruch{1}{k!} [/mm] |< 0.5  * 10^-3
Man könnte die einzelnen Summanden durch [mm] \bruch{1}{2^{k-1}}\ge\bruch{1}{k!} [/mm] abschätzen.
Für die Summe würde das [mm] <\bruch{1}{2^{n-1}} [/mm] bedeuten.
Es müsste also bis zum 12. summiert werden.
Die Abschätzung ist recht schlecht. Eigentlich müssten 6 oder 7 reichen. Also entweder etwas an der Abschätzung feilen, oder länger rechnen.

Ciao.

Bezug
                
Bezug
Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:37 Mi 12.12.2007
Autor: Mirage.Mirror

Hm, okay, ich habe jetzt verstanden, was genau verlangt ist, aber noch nicht so ganz, wie genau das mit der Abschätzung geht und wie du das meinst mit "bis zum 12. summiert".

Und, ich weiß nicht, ob ich auf dem Schlauch stehe, aber bekomme ich so dann nicht nur, für welches n die Ungleichung stimmt, nicht aber a?

Bezug
                        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Mi 12.12.2007
Autor: Zneques

a wird doch mit der Summe  [mm] \summe_{k=0}^{\infty} \bruch{1}{k!} [/mm] berechnet. Nur dürfte es dir sehr schwer fallen alle [mm] \infty [/mm] Summanden zu addieren. Daher musst du ein n bestimmen an dem dein [mm] a_{n}=\summe_{k=0}^{n} \bruch{1}{k!} [/mm]  genau genug ist um die Ungleichung zu erfüllen. Die Lösung der Ungleichung sagt dir genau dieses.

[mm] |\summe_{k=n+1}^{\infty} \bruch{1}{k!}|< |\summe_{k=n+1}^{\infty} \bruch{1}{2^{k-1}}|=|\summe_{k=n}^{\infty} \bruch{1}{2^{k}} |=\bruch{1}{2^{n-1}} [/mm] < 0.5  * 10^-3
Jetzt nach n umstellen, und man sieht ab welchen n [mm] a_{n} [/mm] eine Lösung ist.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]