matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationApproximation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Interpolation und Approximation" - Approximation
Approximation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation: einer Tabelle....
Status: (Frage) beantwortet Status 
Datum: 13:59 Do 10.08.2006
Autor: Herby

.... mmmh, besser der Daten einer Tabelle [grins] oder so..



Ein fröhliches „Hallo“ an einem schönen Donnerstag



ich sitze grade an einer Approximation von einer Datentabelle. Die Näherungsfunktion müsste in Form einer 1/x Funktion lauten. Was für ein Verfahren nimmt man hier?

Daten:

[mm] P_0=(0,1|49960) [/mm]
[mm] P_1=(0,35|3970) [/mm]
[mm] P_2=(0,6|3150) [/mm]
[mm] P_3=(1,5|1580) [/mm]


Hat jemand eine Idee?


Liebe Grüße
Herby


        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 10.08.2006
Autor: MatthiasKr

Hallo Herby,

verstehe ich das richtig, dass du eine funktion in deine messwerte 'fitten' möchtest?

falls du das dem rechner überlassen willst, gibts da ja schöne programme, gnuplot kann das glaubich auch.

wenn dus händisch rechnen willst, musst du eine passende modellfunktion ansetzen und kleinste quadrate ausrechnen.

Gruß
Matthias

Bezug
                
Bezug
Approximation: ?kleinste Quadrate?
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 10.08.2006
Autor: Herby

Hallo Matthias,

> Hallo Herby,
>  
> verstehe ich das richtig, dass du eine funktion in deine
> messwerte 'fitten' möchtest?

naja, ich habe diese vier Wertepaare vorgegeben bekommen - man erkennt ja leicht, dass wenn x gegen Null geht, der y-Wert steigt (und das mächtig :-) ) und wenn x gegen Unendlich läuft, wir hoffentlich bei Null landen.

Jetzt suche ich eine Kurve, die diesen Verlauf hat, mit ungefähr denselben Stützstellen.

> falls du das dem rechner überlassen willst, gibts da ja
> schöne programme, gnuplot kann das glaubich auch.
>  
> wenn dus händisch rechnen willst, musst du eine passende
> modellfunktion ansetzen und kleinste quadrate ausrechnen.
>  

und genau das weiß ich nicht, wie das geht. Also Interpolationspolynome aufstellen nach Lagrange oder Newton ist kein Problem, aber die gehen ja nicht, weil ich eine monoton fallende Kurve habe.

Andere Verfahren kenne ich leider nicht, vielleicht könnte mir hier jemand eines verraten.


So long [winken]

Liebe Grüße
Herby

Bezug
                        
Bezug
Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Fr 11.08.2006
Autor: MatthiasKr

Hallo Herby,

wenn du genau wissen willst, wie die kleinsten quadrate funktionieren, schau mal im netz (zB. Wikipedia) nach. Hier nur die grobe herangehensweise.

sagen wir, du hast n messwerte [mm] $(x_i,y_i)$. [/mm] durch erfahrung und/oder mathematischen sachverstand setzt man nun eine funktion $f$ an, die diese werte möglichst gut approximieren soll. OBda sei f von den zwei parametern a und b abhängig. Man kann also zB. ansetzen

[mm] $f_{a,b}(x)=ax+b$ [/mm]  (linearer Ansatz), oder
[mm] $f_{a,b}(x)=\frac1{ax+b}$ [/mm] usw.

Man möchte nun die Parameter insofern optimal wählen, dass folgende summe (die summe der quadrate) minimal wird:

[mm] $S(a,b)=\summe_{i=1}^n (f_{a,b}(x_i)-y_i)^2 [/mm] $

damit S in $(a,b)$ minimal seien kann, müssen die partiellen ableitungen gleich null sein:

[mm] $\frac{\partial S}{\partial a}=2\cdot \summe_{i=1}^n (f_{a,b}(x_i)-y_i)\cdot \frac{\partial f_{a,b}}{\partial a}(x_i)$ [/mm]


analog für b. im nächsten schritt muss dann dieses gleichungssystem gelöst werden. je nach gewählter ansatzfunktion kann das leicht (linear->lineares GS) oder schwerer sein....

keine ahnung, ob die entstehenden gleichungen für eine ansatzfunktion in deinem fall gut lösbar sind.

Gruß
Matthias

Bezug
                                
Bezug
Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mi 30.08.2006
Autor: Herby

Moin Matthias,

deine Antwort ist nicht in Vergessenheit geraten - ich hab nur im Moment, öhm, etwas wenig Zeit, das mal genauestens nachzulesen.

Aber irgendwann [pfeif]


Trotzdem natürlich "danke schön"


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]