matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikAnzahl der Teiler bis n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Anzahl der Teiler bis n
Anzahl der Teiler bis n < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Teiler bis n: durchschnittliche Anzahl
Status: (Frage) beantwortet Status 
Datum: 23:49 Mi 05.10.2011
Autor: clemenum

Aufgabe
Sei $j [mm] \in \mathbb{N}$ [/mm] und bezeichne $t(j)$ die Anzahl der Teiler von $j$. Bezeichne weiters $t'(n)$ die durchschnittliche Anzahl der Teiler von 1 bis n.
Man zeige nun die Gültigkeit der folgenden Implikation:
t'(n) := [mm] \frac{1}{n}\sum_{i=1}^n [/mm] t(i) [mm] \Rightarrow [/mm] t'(n) =  [mm] \frac{1}{n}\sum_{i=1}^n\left[ \frac{n}{i} \right] [/mm]

Eigentlich scheint dieser Sachverhalt ziemlich klar zu sein, denn:
Sei dazu [mm] $a\in \mathbb{N}$ [/mm] beliebig (aber fest), von welcher wir wissen wollen, wie oft sie durch i teilbar ist. Dann ist doch klar, dass t(i) = a/i, bei i|a gilt. Wenn i nicht a teilt, dann muss man natürlich auf die nächstkleinere ganze Zahl abrunden, also gilt i.A. $t(i) =  [mm] \left[ \frac{a}{i} \right] [/mm] $ . Einsetzten von t(i) in die Prämisse liefert doch sofort die Behauptung.

Es ist doch nichts mehr (wesentliches) zu zeigen. Jedoch wurde die Aufgabe mit (**) versehen (d.h. mittelschwer); dies kann ich nicht nachvollziehen.

Gibt es denn einen exakteren bzw. nicht so anschaulich-intuitiven Beweis dieser Tatsache?

Das ist doch so elemntar, dass man die Argumentationsketten doch nicht mehr weiter logisch zerlegen kann. Wer kann mich widerlegen? ;-)

Würde mich über Hilfe freuen!

        
Bezug
Anzahl der Teiler bis n: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Do 06.10.2011
Autor: leduart

Hallo
anscheinend hast du "Anzahl der Teiler von i" nicht verstanden
was ist für dich die anzahl der Teiler von 6, von 7? und was hat die mit [n/i] zu tun ? n>7
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]