Anzahl der Möglichkeiten < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:55 Fr 05.06.2009 | Autor: | Pille456 |
Aufgabe | Eine Reihe im Kino umfasst n Plätze. Auf wie viele Arten lassen sich k Personen in dieser Reihe platzieren, so dass keine zwei Personen direkt nebeneinander sitzen? |
Hi!
Also ich habe dazu folgendes mir gedacht, bin mir aber gar nicht so sicher wie richtig das ist bzw. ob meine Lösung überhaupt die Frage richtig beantwortet:
Damit erstmal jeder zweite Sitz frei ist muss ja folgendes gelten: [mm] [\bruch{k}{2}] \ge [/mm] n , wobei [] die Aufrundungsfunktion ist.
Daher gibt es schonmal [mm] \vektor{n \\ [\bruch{k}{2}]} [/mm] (Binominalkoeffizient) Möglichkeiten die Plätze auf denen jemand Sitzen soll untereinander zu mischen. Die [mm] [\bruch{k}{2}] [/mm] Plätze, muss ich ja nun in so eine Reihenfolge bringen, dass immer ein Platz dazwischen frei ist. Wenn ich mir nun eine Reihe vorstelle, die so aussieht:
0 0 0 1 1 1, wobei 0 = leerer Platz und 1 = belegter Platz, so muss ich schauen wie ich die 1 1 1 beliebig in 0 0 0 mischen kann. Dazu nehme ich [mm] [\bruch{k}{2}] [/mm] Plätze aus der Reihe (mit n Plätzen) heraus und erhalte somit eine Reihe von Plätzen mit nur leeren Stühlen, also 0 0 0. Nun mische ich die [mm] [\bruch{k}{2}] [/mm] Plätze wieder unter die neue Reihe und schaue wie viele Möglichkeiten ich habe um die Plätze so in die Reihe zu mischen, dass die Nachbarn immer leer sind. Dabei komme ich auf diese Formel:
(k+1)+(k-1)+(k-3)+...+(k-2n+1), da ja immer zwei Nachbarn wegfallen.
Also gäbe es doch (k+1)+(k-1)+(k-3)+...+(k-2n+1) Möglichkeiten n Personen auf k Plätze zu verteilen oder nicht?
Was haltet ihr vom dem Ansatz und passt der überhaupt so richtig zu der Frage? Mir fällt gerade auf, dass der 1. Teil für die Antwort an sich unnötig ist..
Naja, Gruß Pille ! ;)
|
|
|
|
Hallo Pille,
dein Ansatz halte ich für zu kompliziert, das mit dem rausnehmen und wieder reinlegen, und ich befürchte er liefert auch nicht das richtige Ergebnis (Hast du mal probehalber Werte eingesetzt?). Bei solchen "Nachbaraufgaben" macht man es eigentlich immer so (und dahingehend war dein Ansatz nicht schlecht), dass man sich zunächst eine Reihe von (n-k) Nullen vorstellt:
000000000
Alle möglichen Sitzpositionen für die k Leute können sich nur zwischen den Nullen (oder außen dran) befinden, damit ist das Nachbarproblem schonmal gelöst. Wie man leicht sieht, gibt es nun (n-k+1) Möglichkeiten, wo man sich hinsetzen kann, und wir wollen k Leute verteilen. Die Anzahl der Möglichkeiten beträgt also
[mm] \vektor{n-k+1\\k}.
[/mm]
Grüße, Stefan.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:31 Fr 05.06.2009 | Autor: | Pille456 |
Ahh okay, ja das war ja auch irgendwie mein Ansatz ;) Ich musste das nur noch irgendwie mit dem Binominalkoeffizienten in Verbindung bringen - danke!!
|
|
|
|