matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikAnzahl der Kombinationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Anzahl der Kombinationen
Anzahl der Kombinationen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Kombinationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 07.05.2016
Autor: skn89

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://www.gutefrage.net/frage/anzahl-der-k-kombinationen-mit-a-elementen-b1-aus-einer-n-menge?foundIn=notification-center&randomReloadId=436868#comment-124151659

Hallo,

interessant ist die Anzahl der k-Kombinationen, bei denen ein Element "a" aus einer n-Menge b-mal (oder genau b-mal) vorkommt. Beispiel: Ich würfele 4-mal und interessiere mich für die Anzahl der Kombinationen mit genau zwei Einser (andere zwei Zahlen sollen unterschiedlich sein: 1123, 1124, 1125, 1126, 1134, 1135, 1136, 1145, 1146, 1156). Es sind 4-Kombinationen aus 6-Menge mit Wiederholung. Wenn die Gesamtanzahl der Kombinationen [mm] \vektor{9 \\ 4} [/mm] 126 ist, dann ist es mir doch schwierig zu sagen, wie viel davon zweimal "1" ethalten, oder dreimal "3".

Wenn man in einfachen Fällen das Baumdiagramm oder Ähnliches benutzen kann, wird es schwieriger, wenn der Würfel 20-mal oder 1000-mal geworfen wird. Die kombinatorische Lösung ist verlangt.

Wie werden Sie vorgehen? Ich werde für einen hilsfreichen Gedanke oder einen theoretischen Hinweis sehr dankbar.

        
Bezug
Anzahl der Kombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Sa 07.05.2016
Autor: Al-Chwarizmi


> Hallo,
>  
> interessant ist die Anzahl der k-Kombinationen, bei denen
> ein Element "a" aus einer n-Menge b-mal (oder genau b-mal)
> vorkommt. Beispiel: Ich würfele 4-mal und interessiere
> mich für die Anzahl der Kombinationen mit genau zwei
> Einser (andere zwei Zahlen sollen unterschiedlich sein:
> 1123, 1124, 1125, 1126, 1134, 1135, 1136, 1145, 1146,
> 1156). Es sind 4-Kombinationen aus 6-Menge mit
> Wiederholung. Wenn die Gesamtanzahl der Kombinationen
> [mm]\vektor{9 \\ 4}[/mm] 126 ist, dann ist es mir doch schwierig zu
> sagen, wie viel davon zweimal "1" ethalten, oder dreimal
> "3".
>  
> Wenn man in einfachen Fällen das Baumdiagramm oder
> Ähnliches benutzen kann, wird es schwieriger, wenn der
> Würfel 20-mal oder 1000-mal geworfen wird. Die
> kombinatorische Lösung ist verlangt.


Hallo skn89

        [willkommenmr]

habe ich richtig verstanden:  eine Grundmenge G mit n Elementen,
ein bestimmtes Element a aus G und zwei natürliche Zahlen b und k
(mit b≤k≤n) sind vorgegeben. Gesucht ist die Anzahl jener (ungeordneten)
Kombinationen von Elementen aus G, die genau b mal das Element a
und dazu (k-b) andere und untereinander verschiedene Elemente
von G enthalten.

Falls das die richtige Interpretation ist, ist auch die Lösung recht
einfach. Da das b-malige Auftreten des Elementes a quasi "fix
gebucht" ist, gibt dies auch gar keine Wahlmöglichkeiten mehr,
sondern nur eben diese einzige vorgeschriebene Möglichkeit.
Dazu kann man nun jeweils noch genau (k-b) unterschiedliche
Elemente aus den übrigen (n-1) Elementen auswählen. Dazu
gibt es natürlich genau  [mm] $\pmat{n-1\\k-b}$ [/mm] Möglichkeiten.
Dies ist dann auch schon die gefragte Anzahl.

LG ,   Al-Chwarizmi    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]