matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnzahl Partitionen von [n]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - Anzahl Partitionen von [n]
Anzahl Partitionen von [n] < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Partitionen von [n]: Besprechung
Status: (Frage) beantwortet Status 
Datum: 22:50 Di 07.02.2012
Autor: clemenum

Aufgabe
Ermitteln Sie die Anzahl aller Partitionen von [mm] $[n]:=\{1,2,\ldots,n\}$ [/mm] mit $k$ Blöcken.  Sie können diese Anzahl zur Abkürzung [mm] $S_{n,k}$ [/mm] nennen.

Ich behandle erst mal [mm] $S_{n,2} [/mm] $

Wenn man die Partitionen von $[10]$ betrachtet, so stellt sich gleich (allgemein) folgende Frage:
Auf wie viele Arten lässt sich eine natürliche Zahl $n$ als Summe zweier (anderer) natürlicher Zahlen darstellen?

Als (Motivations-)Beispiel für dieses Problem habe ich einfach mal die Zahl 10 systematisch in Summe von zwei natürlichen Zahlen geschrieben:
$10 = 1+9 = 2+8 = 3 + 7 = 4 + 6 = 5 + 5 = ... $
Dort wo die Pünktchen sind, brauche ich nicht mehr weiter zu machen, weil sich (im Sinne der Symmetrie der Binomialkoeffizenten) alles erneut wiederholt.

Die wichtige Erkenntnis (von mir) ist, dass eine natürliche Zahl $n$ sich auf genau $ [mm] [\frac{n}{2} [/mm]  ] $  Arten (abgesehen von der Reihenfolge) als Summe zweier Zahlen darstellen lässt.  

Damit habe ich also insgesamt:
[mm] $S_{n,2} [/mm] = [mm] {n\choose 1} [/mm] + [mm] {n\choose 2} [/mm] + [mm] \ldots [/mm] + [mm] {n\choose [\frac{n}{2} ]} [/mm]  = [mm] 2^{n-1} [/mm] - 1 $  

So, und jetzt wirds komplizierter:
Ich muss jetzt mich fragen, auf wie viele Arten $n$ als Summe dreier natürlicher Zahlen dargestellt werden kann^^ Das ist aber eine Irrsinnsarbeit, weil viel herumprobiert werden müsste.
Ich bin davon überzeugt, dass ichs hier auch ermitteln könnte, aber, es würde sehr lange dauern, wegen der geballten Unübersichtlichkeit. Das Problem: Wenn ich [mm] $S_{n,3}$ [/mm] nicht habe, sehe ich keine (allgemeine) Gesetzmäßigkeit und kann es somit nicht auf [mm] $S_{n,k} [/mm] $ verallgemeinern!

Kann mir da jemand einen Tipp zur Abkürzung geben?


        
Bezug
Anzahl Partitionen von [n]: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Di 07.02.2012
Autor: Schadowmaster

moin,

Die Bezeichnung [mm] $S_{n,k}$ [/mm] ist hier sicher nicht zufällig gewählt, denn gemeint sind damit die []Stirlingzahlen.
Dort auf der Wikiseite stehen einige verschiedene Formeln dafür, die dir sicher helfen.
Ich würde dir raten dir die rekursive Formel recht am Anfang zu schnappen und dir logisch/kombinatorisch zu überlegen, wieso diese gilt.
Wenn du das hast kannst du ggf. auch noch weitere aus dem Wiki-Artikel ableiten oder selbst eine schöne finden.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]