matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAnzahl Nst bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Anzahl Nst bestimmen
Anzahl Nst bestimmen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Nst bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:28 So 04.07.2010
Autor: moerni

Aufgabe
[mm] f(z)=z^6-5z^4+3z^2-1 [/mm]

Hallo.

Die Aufgabe ist, die Anzahl der Nullstellen f in [mm] \overline{B_1(0)} [/mm] zu bestimmen.

Ich bin mir bei meiner Lösung nicht ganz sicher und wäre froh, wenn jemand mal drüber schauen könnte.

[mm] f(z)=g(z^2) [/mm] mit [mm] g(z)=z^3-5z^2+3z-1 [/mm]

(die Nullstellen von g lassen sich scheinbar durch Radikale bestimmen, das kann ich aber nicht, weil wir das nicht hatten)

Die Abbildung z [mm] \mapsto z^2 [/mm] bildet [mm] \overline{B_1(0)} [/mm] auf sich selbst ab. Also erzeugt jede Nullstelle [mm] z_0 [/mm] von g in [mm] B_1(0) [/mm] zwei Nullstellen [mm] \pm\sqrt{z_0} [/mm] von f.

Untersuche g auf Nst auf dem Rand von [mm] B_1(0). [/mm] Aus den Bedingungen [mm] (1)z^3-5z^2+3z-1=0, [/mm] (2)|z|=1 erhalte ich durch umformen und einsetzen etc. nach einiger Rechnung, dass g keine Nullstellen auf dem Rand [mm] B_1(0) [/mm] haben kann, also hat f auf dem Rand von [mm] B_1(0) [/mm] keine Nullstellen.

Definiere [mm] h(z)=z^3-5z^2, [/mm] k(z)=3z-1. Für alle z mit |z|=1 gilt die Abschätzung |k(z)| [mm] \le [/mm] 4 [mm] \le [/mm] |h(z)| (Dreiecksungleichungen). Es ist |k(z)|=4 [mm] \Leftrightarrow [/mm] z=-1 (nachrechnen). Da |h(-1)|=6 gilt also für alle z mit |z|=1, dass |k(z)|<|h(z)|. Nach Rouche gilt dann, dass die Anzahl der Nullstellen von g in [mm] B_1(0) [/mm] gleich der Anzahl der Nullstellen von h ist. h hat in [mm] B_1(0) [/mm] genau 2 Nst (nämlich 0 zweifach, 5 liegt nicht in [mm] B_1(0). [/mm]

Da jede Nst von g zwei Nst von f erzeugt, hat f genau 4 Nst in [mm] \overline{B_1(0)}. [/mm]

Stimmt das so? Oder geht es noch kürzer bzw leichter?
Über eine Antwort würde ich mich sehr freuen!
lg moerni

        
Bezug
Anzahl Nst bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 08.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]