matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionAnzahl Additionen (starke Ind)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Anzahl Additionen (starke Ind)
Anzahl Additionen (starke Ind) < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Additionen (starke Ind): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Di 20.03.2012
Autor: Anabella

Aufgabe
Beweisen Sie mit starker Induktion: Seien [mm] a_{1}, a_{2}, [/mm] ... [mm] a_{n} [/mm] beliebige unterschiedliche natürliche Zahlen, dann sind unabhängig von der Klammerung für die Berechnung der Summe [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + ... + [mm] a_{n} [/mm] immer n-1 Additionen nötig.



Hallo,

das Formulieren von Induktionsanfang und -voraussetzung war kein Problem, aber beim Induktionsschritt n [mm] \to [/mm] n+1 komme ich nicht weiter.

Ich habe also die Summe [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + ... + [mm] a_{n} [/mm] + [mm] a_{n+1} [/mm] und meine Idee war, die Variable s für beliebig geklammerte Ausdrücke (z. B. [mm] b_{1} [/mm] = [mm] a_{1} [/mm] + [mm] a_{2}) [/mm] zu verwenden. Folglich habe ich dann [mm] b_{1} [/mm] + [mm] b_{2} [/mm] + ... + [mm] b_{m} [/mm] und kann die Induktionsvoraussetzung anwenden.

[mm] Additionen(a_{1} [/mm] + [mm] a_{2} [/mm] + ... + [mm] a_{n} [/mm] + [mm] a_{n+1}) [/mm] = [mm] Additionen(b_{1} [/mm] + [mm] b_{2} [/mm] + ... + [mm] b_{m}) [/mm] = m-1 + [und jetzt muss ich aber noch die Additionen in den jeweiligen geklammerten Ausdrücken dazuzählen] + [mm] Additionen(b_{1}) [/mm] + [mm] Additionen(b_{2}) [/mm] + ... + [mm] Additionen(b_{m}) [/mm]

Und jetzt stehe ich an. Kann mir jemand weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


EDIT: Ich sehe gerade, dass ich versehentlich im Schul- und nicht im Hochschulforum gelandet bin...

        
Bezug
Anzahl Additionen (starke Ind): Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Mi 21.03.2012
Autor: M.Rex

Hallo

Du musst die folgende Summe berechnen:

[mm] \sum_{i=1}^{n+1}a_{i} [/mm]

Dazu folgendes:

[mm] \sum_{i=1}^{n+1}a_{i} [/mm]
[mm] =\left(\sum_{i=1}^{n}a_{i}\right)+a_{n+1} [/mm]

Die geklammerte Summe berechnest du mit n-1 Additionen, nach I.V.
Dazu kommt noch die eine weitere Addition, also berechnest du [mm] \sum_{i=1}^{n+1}a_{i} [/mm] mit (n-1)+1=n Additionen.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]