matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnz. k-elem. Teilmengen, Lücke
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Anz. k-elem. Teilmengen, Lücke
Anz. k-elem. Teilmengen, Lücke < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anz. k-elem. Teilmengen, Lücke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Di 07.11.2017
Autor: Teufel

Hi!

Zur Zeit beschäftigt mich folgende Frage: Angenommen man hat die Menge [mm] $\{1,\ldots, n\}$. [/mm] Auf wie viele Arten kann man $k$ Elemente daraus ziehen, sodass jedes der $k$ Elemente mindestens Abstand 1 zu den anderen hat? Also wie viele [mm] $\{x_1,\ldots, x_k\}\subseteq\{1,\ldots,n\}$ [/mm] mit [mm] $|x_i-x_j|>1 \forall i\not= [/mm] j$ gibt es?

Gibt es da eine geschlossene Formel für? Ich komme nur auf die Rekursionsgleichung mit [mm] $a_{2k,k}=1$ [/mm] und [mm] $a_{n,1}=n$. [/mm]

[mm] $$a_{n,k}=\sum\limits_{i=2}^{n}a_{n-i,k-1}$$ [/mm]

        
Bezug
Anz. k-elem. Teilmengen, Lücke: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 Di 14.11.2017
Autor: tobit09

Hi Teufel!


Ich komme (im Falle [mm] $n\ge2k-1$) [/mm] auf die gesuchte Anzahl gegeben durch den Binomialkoeffizienten [mm] $\binom{n-(k-1)}{k}$, [/mm] also der Anzahl der k-elementigen Teilmengen von [mm] $\{1,\ldots,n-(k-1)\}$. [/mm]


Anschaulicher Erklärungsversuch dazu:

Die Teilmengen von [mm] $\{1,\ldots,n\}$, [/mm] die zwischen je zwei Elementen "mindestens ein Element Lücke" haben, erhält man, indem man von einer beliebigen k-elementigen Teilmenge $Z$ von [mm] $\{1,\ldots,n-(k-1)\}$ [/mm] ausgeht und hinter jedem der k-1 ersten Elemente von $Z$ eine "um 1 vergrößerte Lücke" einfügt, indem man Elemente von $Z$ durch größere Werte ersetzt.

Ich weiß nicht, ob diese Idee so verständlich wird.
Wenn nötig, muss ich sie formalisieren.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]