matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAnwendung von de l' Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Anwendung von de l' Hospital
Anwendung von de l' Hospital < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung von de l' Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:17 Fr 13.01.2012
Autor: Lu-

Aufgabe
Löse [mm] lim_{x->\infty} \frac{e^x}{x^\alpha} [/mm] mit Hilfe von den Satz von  de l' Hospital
[mm] \alpha [/mm] > 0

[mm] lim_{x->\infty}\frac{e^x}{x^\alpha} [/mm] = [mm] lim_{x->\infty}\frac{e^x}{\alpha*x^{\alpha-1}} [/mm]

Tutor meinte etwas mit endlich oft differenzieren. Mir ist aber nicht klar, was das bringen soll!!

[mm] =1/\alpha [/mm] * [mm] 1/(\alpha-1) ....1/(\alpha [/mm] -n) * [mm] lim_{x->\infty} \frac{e^x}{x^{\alpha - n -1}} [/mm]

Kann mir da wer weiterhelfen?
Vielen lieben dank ;)

        
Bezug
Anwendung von de l' Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Fr 13.01.2012
Autor: leduart

Hallo
es gibt ein n, sodass [mm] \alpha-n [/mm] = [mm] \beta [/mm] negativ ist, dann hast du im lim [mm] e^x*x^{-\beta} [/mm] stehen und das geht beides gegen [mm] \infty. [/mm]
gruss leduart

Bezug
                
Bezug
Anwendung von de l' Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Fr 13.01.2012
Autor: Lu-


> Hallo
>  es gibt ein n, sodass [mm]\alpha-n[/mm] = [mm]\beta[/mm] negativ ist, dann
> hast du im lim [mm]e^x*x^{-\beta}[/mm] stehen und das geht beides
> gegen [mm]\infty.[/mm]
>  gruss leduart

Wo ist da die -1 ?

> $ [mm] lim_{x->\infty} \frac{e^x}{x^{\alpha - n -1}} [/mm] $

[mm] e^x [/mm] geht nach + unendlich ja.  Wieso aber der Tem mit x auch?


Bezug
                        
Bezug
Anwendung von de l' Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Fr 13.01.2012
Autor: leduart

Hallo
[mm] e^x*x? e^x*x^{0.2} [/mm]
a) alpha ist ne ganze Zahl: [mm] \alpha=m [/mm] nach m maligen differenzieren stht 1 im Nenner (faktoren weggelassen)
b) alpHa zwischen m und m+1 nach m+1 mal differenzieren stht im Nenner [mm] x^{-\beta} [/mm] mit [mm] \beta=-(\alpha-m-1)>0 [/mm]
also insgesamt [mm] e^x*x^{\beta} [/mm] jetzt x gegen [mm] \infty [/mm]
x hoch was positives geht immer gegen /infty für x gegen [mm] \infty! [/mm] kannst du aber auch zeigen, also ein x angeben. so dass [mm] x^r>C [/mm] C beliebig, fest
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]