matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungAnwendung von Bernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Anwendung von Bernoulli
Anwendung von Bernoulli < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung von Bernoulli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Sa 17.02.2007
Autor: suppe124

Aufgabe
Eine schlecht eingestellte Maschine produziert 20% Ausschuss. Aus der laufenden Produktion werden 6 Stücke entnommen. Mit welcher Wahrscheinlichkeit
a) ist deiner der Teile fehlerhaft.
b) sind mehr als 2 teile fehlerhaft

Hallo,
ich habe diese aufgabe gerechnet, bin mir aber nicht sicher, ob ich p richtig gewählt habe.

Ich habe gerechnet:
a) p(x=0) =6über 0 * (02) HOCH 0 * (0,8) HOCH 6
                 = 26,2%

b) p(2<x)=1- 6 über 2 * (0,2) HOCH 2 * (0,8) HOCH 4
              = 1- 0,24576
              =75,45%


Es wäre super, wenn ihr mir helfen könntet, denn ich schreibe am Montag einen Test und sie Ansätze fallen mir immer so schwer!

        
Bezug
Anwendung von Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 17.02.2007
Autor: smee

Hallo Franziska!

> ich habe diese aufgabe gerechnet, bin mir aber nicht
> sicher, ob ich p richtig gewählt habe.
>  
> Ich habe gerechnet:
>   a) p(x=0) =6über 0 * (02) HOCH 0 * (0,8) HOCH 6
>                   = 26,2%

[ok]

Uff ... die Rechnung stimmt zwar, ist aber furchbar unleserlich ;-) ... versuch doch mal, dich in den Formeleditor einzuarbeiten (nur so als Tipp.)

> b) p(2<x)=1- 6 über 2 * (0,2) HOCH 2 * (0,8) HOCH 4
>                = 1- 0,24576
>                =75,45%

Nun, das Ergebnis kann nicht stimmen. Überleg dir mal selbst, warum, und berücksichtige dabei dein (richtiges) Ergebnis aus a)! (Wieviele mögliche Werte kann X annehmen und was ist über die Summe der WS für diese Ereignisse zu sagen?)

Gesucht ist ja:

[mm]P(X > 2) = 1 - P(X \le 2) = 1 - (P(X = 2) + \ldots)[/mm]

Gruß,
Carsten

Bezug
                
Bezug
Anwendung von Bernoulli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 18.02.2007
Autor: suppe124

Hallo,
ja du hast recht. ich habe in meinem Buch nachgelesen, wenn ich p(2<x) sein soll, dann rechnet man: 1-P(x<1). so müsste ich P(X=1) + p(x=0) rechnen oder?
Für P(X=1) habe ich 39% raus
Für p(x=0) habe ich 26,21% raus.

Zusammen wäre das dann 65,21%.

Ist das dann richtig??

Bezug
                        
Bezug
Anwendung von Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 So 18.02.2007
Autor: smee


> Hallo,
> ja du hast recht. ich habe in meinem Buch nachgelesen, wenn
> ich p(2<x) sein soll, dann rechnet man: 1-P(x<1). so müsste
> ich P(X=1) + p(x=0) rechnen oder?

> Für P(X=1) habe ich 39% raus
> Für p(x=0) habe ich 26,21% raus.
>
> Zusammen wäre das dann 65,21%.
>
> Ist das dann richtig??  

Fast ;-)

Du willst [mm]P(X > 2)[/mm] rechnen, also [mm]1 - P(X \red{\le} \ 2) = 1 - (\red{P(X=2)} + P(X=1) + P(X=0))[/mm]

Gruß,
Carsten

Bezug
                                
Bezug
Anwendung von Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 So 18.02.2007
Autor: suppe124

ah ok, verstanden danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]