matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnwendung des Mittelwertsatzes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Anwendung des Mittelwertsatzes
Anwendung des Mittelwertsatzes < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung des Mittelwertsatzes: Bestimmung der L-Konstante
Status: (Frage) beantwortet Status 
Datum: 09:54 Fr 24.04.2020
Autor: clemenum

Aufgabe
Untersuche die Differenzialgleichung [mm] $yʹ=6x\cdot \sqrt[3]{y^2}$ [/mm] auf eindeutige Lösbarkeit ohne sie direkt zu lösen.

Meine Lösung:
Die rechte Seite $f(x,y):=6x [mm] \sqrt[3]{y^2}$ [/mm] der Gleichung ist ganz stetig in [mm] $\mathbb{R}^2$. [/mm] Nach dem Existenzsatz von Peano geht daher durch jeden Punkt [mm] $(x_0,y_0)\in \mathbb{R}^2$ [/mm] eine Lösung.
Ist [mm] $y_0\neq [/mm] 0,$ so gibt es eine Umgebung [mm] $(x_0,y_0),$ [/mm] in der $f(x,y)$ Lipschitz-stetig ist. Es gilt nämlich:
[mm] $∣f(x,y)−f(x,y_0)∣=6∣x∣∣y^{2/3}−y_0^{2/3}∣\le L∣y−y_0∣$ [/mm] (*) .
Das (*) bleibt noch zu zeigen und da liegt mein Problem. Die Lipschitz-Stetigkeit muss laut Satz von Picard Lindelöf bezüglich $y$ gezeigt werden. Meine Idee ist, hier den Mittelwertsatz anzuwenden. Allerdings weiß ich nicht in welchen Dimensionen. Wir sind zwar hier im zweidimensionalen und projezieren in den eindimensionalen Raum, brauchen also den dreidimensionalen Raum für eine Graphik. Aber bezüglich Lipschitz-Stetigkeit ist es eindimensional.

Ich versuche es einmal: Sei $f$ in [mm] $[y,y_0]$ [/mm] stetig und in [mm] $]y_0,y[$ [/mm] differenzierbar. Dann gibt es ein [mm] $\xi\in]y_0,y[$ [/mm] sodass gilt [mm] $\frac{f(x,y)−f(x,y_0)}{y−y_0}=f'(x,\xi).$ [/mm] Setzen wir ein, so erhalten wir [mm] $\frac{6x\left(y^{2/3}−y_0^{2/3}\right)}{y−y_0}=\frac{4x}{\sqrt[3]{\xi}}.$ [/mm] Wegen [mm] $\lim_{y_0\to \pm \infty} |\frac{4x}{\sqrt[3]{y_0}}|=0$ [/mm] bedeutet dies, dass der Ausdruck rechts beschränkt bleibt.
Somit gibt es gute Chancen, dass so eine Lipschitz-Konstante findbar ist. Aber wie machen wir das? Ich habe Unsicherheit mit den Dimensionen hier. Ich weiß nicht sicher, ob ich den MWS richtig ins Mehrdimensionale übertragen habe und außerdem bin ich mir nicht sicher wie mit dem $x$ umzugehen ist. Wie werden wir das los?

Wäre für kurze restliche Klärung sehr dankbar!

Gruß,
Clemenum

        
Bezug
Anwendung des Mittelwertsatzes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Fr 24.04.2020
Autor: leduart

Hallo
das ist nicht "mehrdimensional", du willst nur Lipschitz für die einfache Funktion f(y), das x spielt doch hier keine Rolle, allerdings ist f in 0 nicht Lipschitz.
Gruß ledum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]