matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisAnwendung Satz von Rouche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Anwendung Satz von Rouche
Anwendung Satz von Rouche < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Satz von Rouche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Do 25.06.2015
Autor: blub77

Hallo,
ich sitze gerade an einer Aufgabe, die an sich wohl nicht so schwer ist, nur bei der Schlussfolgerung stocke ich.

Es geht um die Bestimmung der Vielfachheiten von Nullstellen von
a) f(z)= [mm] 3z^{4}-7z+2 [/mm] für 1< [mm] |z|<\bruch{3}{2} [/mm]
b) [mm] f(z)=z^{8}-3z^{2}+1 [/mm] für [mm] \IC\backslash\{z| |z| \le 1\} [/mm]

bin erstmal bei a)
sei [mm] g(z)=3z^{4} [/mm]

dann [mm] |f(z)-g(z)|=|-7z+2|\le7|z|+2=7 \bruch{3}{2}+2=\bruch{25}{2}<3z^{4} [/mm]

demnach müsste f die gleiche anzahl an nullstellen haben, wie g..nur hat [mm] 3z^{4} [/mm] im angebenen Bereich doch keine Nullstelle, oder übersehe ich da was?

danke für hilfen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendung Satz von Rouche: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Do 25.06.2015
Autor: fred97


> Hallo,
>  ich sitze gerade an einer Aufgabe, die an sich wohl nicht
> so schwer ist, nur bei der Schlussfolgerung stocke ich.
>  
> Es geht um die Bestimmung der Vielfachheiten von
> Nullstellen von
> a) f(z)= [mm]3z^{4}-7z+2[/mm] für 1< [mm]|z|<\bruch{3}{2}[/mm]
>  b) [mm]f(z)=z^{8}-3z^{2}+1[/mm] für [mm]\IC\backslash\{z| |z| \le 1\}[/mm]
>  
> bin erstmal bei a)
>  sei [mm]g(z)=3z^{4}[/mm]
>  
> dann [mm]|f(z)-g(z)|=|-7z+2|\le7|z|+2=7 \bruch{3}{2}+2=\bruch{25}{2}<3z^{4}[/mm]


Am Ende sollt da wohl stehen: ....  [mm] $<3|z|^4=|g(z)|$ [/mm]

>  
> demnach müsste f die gleiche anzahl an nullstellen haben,
> wie g..nur hat [mm]3z^{4}[/mm] im angebenen Bereich doch keine
> Nullstelle, oder übersehe ich da was?


Nun überlege mal, was Du gemacht hast. Du hast gezeigt:

     $|f(z)-g(z)|<|g(z)|$ für  $ [mm] |z|=\bruch{3}{2} [/mm] $

Das bedeutet: in der Kreisscheibe [mm] \{z \in \IC:|z|<\bruch{3}{2}\} [/mm] haben f und g gleichviele Nullstellen (gezählt mit Vielfachheiten)

g hat in dieser Scheibe 4 Nullstellen, also auch f.


Die Bedingung |z|>1 hast Du noch nicht eingebracht !

FRED

>  
> danke für hilfen!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Anwendung Satz von Rouche: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:20 Do 25.06.2015
Autor: blub77

Hallo, danke erstmal für die Antwort.

ich habe jetzt einfach geguckt was im Einheitskreis passiert.

sei g(z)=-7z+2

[mm] |f-g|=|3z^{4}|\le3|z|^{4}=3<9=7|z|+2 [/mm]

das heißt für [mm] |z|\le1 [/mm] hat f eine Nullstelle und damit 3 Nullstellen für [mm] 1<|z|<\bruch{3}{2} [/mm]

kann ich das so machen?

das gleiche würde ich dann auch für b so machen.
ich weiß f hat 8 Nullstellen (inklusive Vielfachheiten)

sei
[mm] g(z)=-3z^{2}+1 [/mm]
dann [mm] |f-g|=|z^{8}|\le|z|^{8}=1<4=3|z|^{2}+1 [/mm]
also hat f dort 2 Nullstellen und damit 6 Nullstellen in [mm] \IC\backslash [/mm] {z| [mm] |z|\le1 [/mm] }

reicht das von der Argumentation?

Bezug
                        
Bezug
Anwendung Satz von Rouche: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 28.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]