matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnwendung Satz von Picard Lind
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Anwendung Satz von Picard Lind
Anwendung Satz von Picard Lind < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Satz von Picard Lind: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Sa 08.12.2012
Autor: ops

Aufgabe
Gegeben sei das Anfangswertproblem [mm] y^{'}(t) [/mm] = [mm] ty^2(t), y(t_{0}) [/mm] = [mm] y_{0}. [/mm]
(a) Untersuchen Sie, ob es für alle Anfangswerte eine eindeutig bestimmte
Lösung des Anfangswertproblems gibt.

Ich muss ja zeigen, dass [mm] f(y,t)=ty^2(t) [/mm] auf
D = {(t, y) ∈ [mm] R^{n+1} [/mm] : [mm] t_{0} [/mm] ≤ t ≤ [mm] t_{0} [/mm] + a, |y − [mm] y_{0}| [/mm] ≤ b}
stetig und bezüglich y Lipschitz-stetig ist, d.h.
|f(t, [mm] y_{1}) [/mm] − f(t, [mm] y_{2})| [/mm] ≤ L [mm] |y_{1} [/mm] − [mm] y_{2}| [/mm] ∀(t, [mm] y_{1}), (t,y_{2}) [/mm] ∈ D

Nun zur Frage: Wie finde ich das a und das b von meinem Quader D, denn das muss ich doch vorher bestimmen, um die Lipschitz-Stetigkeit zu zeigen oder? Ich muss ja a und b so wählen, dass f auf dem Intervall D dann stetig ist. Aber um Aussagen über das f zu haben, brauche ich doch vorher das y oder?
Oder kann ich in diesem Fall das a und b beliebig wählen, da [mm] f(y,t)=ty^2, [/mm] wenn man y als unabhängige Varibale und nicht als Funktion von t sieht, stetig ist für alle a und b, da ja Polynom ist.
Ich habe auch irgendwo gelesen, dass wenn ich f bzgl. y ableite und diese partielle Ableitung stetig ist, dass daraus sofort die Lipschitz-Stetigkeit folgt. In meinem Fall ist ja [mm] df/dy=t*y^{'}(t) [/mm] und da kann ich nicht wirklich was über die Stetigkeit sagen, da ich das [mm] y^{'} [/mm] ja nicht kenne.
Oder muss ich das y als unabhängige Variable betrachen und nicht als Funktion von t, dann wäre [mm] df/dy=2*t*y^{} [/mm] und -wenn y als Variable betrachtet - die Ableitung stetig.
Ich stehe gerade wirklich auf dem Schlauch und hoffe das ein paar meiner Frage beantwortet werden können.

Mit freundlichem Gruß
ops

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendung Satz von Picard Lind: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 10.12.2012
Autor: rafael_31415

Hallo,

du musst zeigen das die Funktion [mm] f:\IR^2\to \IR, f(y,t)=ty^2 [/mm] stetig und lokal lipschitz in y ist. y ist hier eine Variable, keine Funktion!

Dein Zugang ist dann richtig: f ist stetig da Polynom; und f ist stetig differenzierbar in y (es ist [mm] \partial [/mm] f / [mm] \partial [/mm] y = 2ty) => f ist lokal lipschitz in y.

LG rafael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]