Anteile Komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:53 Di 04.11.2008 | Autor: | gonk |
Aufgabe | Berechnen Sie den Realteil, Imaginärteil und Betrag folgender komplexer Zahl:
[mm] (\bruch{1+ \wurzel{3}*i}{1-i})^4 [/mm] |
Erstmal Hallo, hoffe mal das sich noch ein paar Nachtschwärmer finden, die ein wenig Licht in mein Dunkel bringen können.
Die Aufgabe an sich ist ja nicht sonderlich kompliziert. Man erweitert mit dem konjugiert komplexen um den Imaginärteil aus dem Nenner zu bekommen etc.
Mein Problem bezieht sich auf das was danach kommt.
Wenn das ganze danach ausmultipliziert ist kommt da ein relativ unschöner Term raus, man würde vll erwarten das es sich um ganze Zahlen handelt o.ä nach meinen Umformungen steht da aber:
[mm] \bruch{20-6*i+3*\wurzel{3}*i-12*\wurzel{3}}{16}
[/mm]
kann mein Ergebnis richtig sein? Ich habe da auf Grund der ästhetik bedenken ... wenn mein Ergebnis richtig sein sollte, wie gebe ich dann zb den Imaginärteil an? Der Ausdruck lässt sich ja nicht auf ein i bringen sondern es sind quasi 2 Anteile i enthalten ... Wäre nett wenn mich diesbezüglich jemand aufklären könnte.
Vll noch kurz zum Rechenweg: Habe mit dem konjugiert komplexen erweitert
--> [mm] (\bruch{1+i+\wurzel{3}*i-\wurzel{3}}{2})^4
[/mm]
und mich dann durchs ausmultiplizieren gequält...
mfg gonk
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:05 Di 04.11.2008 | Autor: | Marcel |
Hallo,
> Berechnen Sie den Realteil, Imaginärteil und Betrag
> folgender komplexer Zahl:
> [mm](\bruch{1+ \wurzel{3}*i}{1-i})^4[/mm]
> Erstmal Hallo, hoffe mal
> das sich noch ein paar Nachtschwärmer finden, die ein wenig
> Licht in mein Dunkel bringen können.
>
> Die Aufgabe an sich ist ja nicht sonderlich kompliziert.
> Man erweitert mit dem konjugiert komplexen um den
> Imaginärteil aus dem Nenner zu bekommen etc.
> Mein Problem bezieht sich auf das was danach kommt.
>
> Wenn das ganze danach ausmultipliziert ist kommt da ein
> relativ unschöner Term raus, man würde vll erwarten das es
> sich um ganze Zahlen handelt o.ä nach meinen Umformungen
> steht da aber:
>
> [mm]\bruch{20-6*i+3*\wurzel{3}*i-12*\wurzel{3}}{16}[/mm]
> kann mein Ergebnis richtig sein? Ich habe da auf Grund der
> ästhetik bedenken ... wenn mein Ergebnis richtig sein
> sollte, wie gebe ich dann zb den Imaginärteil an? Der
> Ausdruck lässt sich ja nicht auf ein i bringen sondern es
> sind quasi 2 Anteile i enthalten ... Wäre nett wenn mich
> diesbezüglich jemand aufklären könnte.
>
> Vll noch kurz zum Rechenweg: Habe mit dem konjugiert
> komplexen erweitert
>
> --> [mm](\bruch{1+i+\wurzel{3}*i-\wurzel{3}}{2})^4[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
>
> und mich dann durchs ausmultiplizieren gequält...
>
> mfg gonk
ehrlich gesagt habe ich bei der Aufgabe keine Lust, mich da mit binomischen Formeln und dem Pascalschen Dreieck etc. herumzuplagen (selbstverständlich ist das der naheliegendste Weg und sollte auch zum Ziel führen).
Ich mache folgendes:
Sei $z:=\bruch{1+ \wurzel{3}*i}{1-i}=\frac{(1+\wurzel{3}*i)(1+i)}{1^2-i^2}=\frac{1-\sqrt{3}}{2}+i\frac{1+\sqrt{3}}{2}\,.$ Das liefert $|z|^2=\frac{8}{4}=2\,,$ also $|z|=\sqrt{2}\,.$
Der (faule) Mathematiker nimmt nun den Taschenrechner und überzeugt sich davon, dass $\arctan(\text{Re}(z)/\text{Im}(z))=-75°=\frac{-75}{180}*\pi=\frac{-5}{12}\pi\,.$
(Wir kümmern uns jetzt mal nicht darum, wie man das beweist. Vielleicht mit bekannten Werten für den Sinus und Kosinus und dann Additionstheoreme + den trigonometrschen Pythagoras. Aber der Taschenrechner hatte mir so schön den Wert $75°$ ausgespuckt, ich glaube jetzt einfach mal fest daran .)
Demnach gilt nun:
$$z^4=\left(\sqrt{2}*e^{i*\frac{-5}{12}\pi}\right)^4=4*\left(\cos\left(\frac{-5}{3}\pi\right)+i*\sin\left(\frac{-5}{3}\pi\right)\right)=4*\left(\frac{1}{2}+i*\sqrt{\frac{3}{4}}\right)=2+i*\left(2*\sqrt{3}}\right)\,.$$
Mit anderen Worten:
Du wirst Dich leider irgendwo verrechnet haben (ich habe extra mit einem komplexen Rechner gerade nachgerechnet).
P.S.:
So als Tipp: Man kann hier [mm] $\left((1-\sqrt{3}+i*(1+\sqrt{3})\right)^4$ [/mm] auch (etwas) elegant so ausrechnen:
[mm] $$\left((1-\sqrt{3}+i*(1+\sqrt{3})\right)^2=(1-\sqrt{3})^2+2*i*(1-3)-(1+\sqrt{3})^2$$
[/mm]
[mm] $$=1-2\sqrt{3}+3-4i-1-2\sqrt{3}-3=-4\sqrt{3}-4i$$
[/mm]
Quadrierst Du das nochmal:
[mm] $$(-4\sqrt{3}-4i)^2=(4\sqrt{3}+4i)^2=16(3+2\sqrt{3}i-1)=32+32\sqrt{3}*i$$
[/mm]
Vielleicht findest Du ja so Deinen Rechenfehler.
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:24 Di 04.11.2008 | Autor: | gonk |
Besten Dank, das hilft mir schonmal weiter ;)
Kein Wunder das man sich bei dem ganzen Wegstreichen und Zusammenziehen irgendwo vertut :P
mfg gonk
|
|
|
|