matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnsatz nach Störfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Ansatz nach Störfunktion
Ansatz nach Störfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz nach Störfunktion: Welchen Ansatz bei bei sin+cos
Status: (Frage) beantwortet Status 
Datum: 12:18 Mi 06.02.2013
Autor: v6bastian

Aufgabe
y''+4y'+4y=sin(x)+7cos(x)

Hallo zusammen,

welchen Ansatz wählt man, wenn die Störfunktion aus der Addition von Sin uns Cos besteht? In meinen Unterlagen und im Netz finde ich nur den "eingeschränkten" Ansatz für a sin (kx) "oder" a cos (kx)

Gibt es eventuell eine erweiterte Tabelle der Ansätze mit kombinierten Störfunktionen?

Gruß & Danke im Voraus
Sebastian

        
Bezug
Ansatz nach Störfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 06.02.2013
Autor: fred97


> y''+4y'+4y=sin(x)+7cos(x)
>  Hallo zusammen,
>  
> welchen Ansatz wählt man, wenn die Störfunktion aus der
> Addition von Sin uns Cos besteht? In meinen Unterlagen und
> im Netz finde ich nur den "eingeschränkten" Ansatz für a
> sin (kx) "oder" a cos (kx)
>  
> Gibt es eventuell eine erweiterte Tabelle der Ansätze mit
> kombinierten Störfunktionen?

Schau mal hier:

http://homepages.thm.de/~hg8070/math2kmub06/dgl_ansaetze.pdf

FRED

>  
> Gruß & Danke im Voraus
>  Sebastian


Bezug
                
Bezug
Ansatz nach Störfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Mi 06.02.2013
Autor: v6bastian

Danke, ich hatte dieses PDF auch schon über die Google-Suche gefunden. Leider hat es mir bei meiner Problemstellung nicht geholfen, da dort faktorisierte und keine summierten Störfunktionen genannt werden. Trotzdem vielen Dank Fred.

Vielleicht kann mir aber jemand hier bestätigen, was ich wo anders aufgeschnappt habe.

Wenn ich die Summe aus sin und cos in der Störfunktion habe, dann muss ich zwei partielle Lösungen für den Summand 1 und Summand 2 bilden und die Lösung hinzu addieren. In dem Falls Quasi:

[mm] y=y_{h}+y_{p sin}+y_{p cos} [/mm]

Stimmt das so?


Bezug
                        
Bezug
Ansatz nach Störfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 06.02.2013
Autor: fred97


> Danke, ich hatte dieses PDF auch schon über die
> Google-Suche gefunden. Leider hat es mir bei meiner
> Problemstellung nicht geholfen, da dort faktorisierte und
> keine summierten Störfunktionen genannt werden. Trotzdem
> vielen Dank Fred.
>  
> Vielleicht kann mir aber jemand hier bestätigen, was ich
> wo anders aufgeschnappt habe.
>  
> Wenn ich die Summe aus sin und cos in der Störfunktion
> habe, dann muss ich zwei partielle Lösungen für den
> Summand 1 und Summand 2 bilden und die Lösung hinzu
> addieren. In dem Falls Quasi:

Was bedeutet Quasi in der Mathematik ?


>  
> [mm]y=y_{h}+y_{p sin}+y_{p cos}[/mm]
>  
> Stimmt das so?

Ja, das stimmt. Das kannst Du doch sofort nachrechnen. Die Dgl ist linear !

FRED

>  


Bezug
                                
Bezug
Ansatz nach Störfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Mi 06.02.2013
Autor: v6bastian

Danke.

Quasi bedeutet in der Mathematik nichts, drück aber meine Unsicherheit aus ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]