matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnsatz für Störfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Ansatz für Störfunktion
Ansatz für Störfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz für Störfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 11.12.2006
Autor: praezi

Aufgabe
[mm] Y''+Y'=e^X+cos(X) [/mm]

hallo...!!
das problem, welches ich habe, bezieht auf das lösen der störfunktion bzw. mit welchen ansatz ich die partikuläre lösung erhalte. im papula band 2 steht  auf der seite zwar eine tabelle, aber ich weis nicht welcher davon zutrifft. vielleicht sieht man ja auch den wald vor lauter bäumen nicht, aber wäre nett wenn jemand mal einen hinweis geben könnte....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ansatz für Störfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 12.12.2006
Autor: moudi


> [mm]Y''+Y'=e^X+cos(X)[/mm]
>  hallo...!!
>  das problem, welches ich habe, bezieht auf das lösen der
> störfunktion bzw. mit welchen ansatz ich die partikuläre
> lösung erhalte. im papula band 2 steht  auf der seite zwar
> eine tabelle, aber ich weis nicht welcher davon zutrifft.
> vielleicht sieht man ja auch den wald vor lauter bäumen
> nicht, aber wäre nett wenn jemand mal einen hinweis geben
> könnte....

Hallo praezi

Für [mm] $e^x$ [/mm] wählt man [mm] $y_p=Ae^x$, [/mm] da 1 keine Nullstelle des charakteristischen Polynoms der DGL ist.
Für [mm] $\cos(x)$ [/mm] wählt man [mm] $y_p=B\cos(x)+C\sin(x)$, [/mm] da i keine Nullstelle des char. Polynoms ist.

Also Total: [mm] $y_p(x)=Ae^x+B\cos(x)+C\sin(x)$ [/mm] durch einsetzen in die DGL und Koeffizientenvergleich bestimmt man A,B,C.

mfG Moudi


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]