matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnsätze DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Ansätze DGL
Ansätze DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansätze DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Do 03.05.2012
Autor: racy90

hallo

Ich habe folgende dreidimensionale inhomogene DGL y'=Ay+f wobei 17+42i euín Eigenwert von A ist mit alg V 3 und geo V 1

Nun soll ich für folgende Inhomogenitäten die Ansätze finden

[mm] f=\vektor{t \\ t²\\42} [/mm] und [mm] f=\vektor{17 \\ 42\\42}e^{17x} [/mm]

Gibts da Tabellen dazu oder beruht das auf einen System ,weil ich weiß leider nicht wie man diese Ansätze findet bzw erkennt?

        
Bezug
Ansätze DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Do 03.05.2012
Autor: MathePower

Hallo racy90,

> hallo
>  
> Ich habe folgende dreidimensionale inhomogene DGL y'=Ay+f
> wobei 17+42i euín Eigenwert von A ist mit alg V 3 und geo
> V 1
>  


Dann ist auch 17-42i ein 3-facher Eigenwert von A,
somit ist handelt es sich bei A um mindestens eien 6x6-Matrix,
falls A eine Matrix mit reellen EInträgen ist.


> Nun soll ich für folgende Inhomogenitäten die Ansätze
> finden
>  
> [mm]f=\vektor{t \\ t²\\42}[/mm] und [mm]f=\vektor{17 \\ 42\\42}e^{17x}[/mm]
>


Danach handelt es sich bei A um eine 3x3-Matrix.
Eine 3x3- Matrix kann keinen 3fachen  komplexen Eigenwert haben.


> Gibts da Tabellen dazu oder beruht das auf einen System
> ,weil ich weiß leider nicht wie man diese Ansätze findet
> bzw erkennt?



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]