matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnordnung von Büchern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - Anordnung von Büchern
Anordnung von Büchern < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnung von Büchern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 So 08.03.2009
Autor: jeada

Aufgabe
Eine fleißige Hausfrau staubt jeden Morgen 10 Bücher ab, die nebeneinander auf einem
Regal stehen. Sie nimmt zu diesem Zwecke alle 10 Bücher vom Regal und stellt sie nach
der Reinigung wieder wahllos zurück.

Unter den 10 Bänden sei ein dreibändiges Lexikon. Man berechne die Wahrscheinlichkeit,
daß die drei Bände des Lexikons nach der Reinigung nebeneinander stehen.

Hallo, hier erstmal meine Überlegungen.

Bücher  x
Lexikon o

Nun gibt es 8 mögliche Anordnungen:
oooxxxxxxx
xoooxxxxxx
xxoooxxxxx
...
xxxxxxxooo

Diese Bücher und Lexika können allerdings noch permutieren also:  [mm] \bruch{8+7!+3!}{10!} [/mm]
edit: Die Möglichkeiten summiere ich auf oder? Hatte zuerst multipliziert.

Stimmt mein Gedankengang?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

lg, Danke im Vorraus!

        
Bezug
Anordnung von Büchern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 08.03.2009
Autor: angela.h.b.


> Eine fleißige Hausfrau staubt jeden Morgen 10 Bücher ab,
> die nebeneinander auf einem
>  Regal stehen. Sie nimmt zu diesem Zwecke alle 10 Bücher
> vom Regal und stellt sie nach
>  der Reinigung wieder wahllos zurück.
>  
> Unter den 10 Bänden sei ein dreibändiges Lexikon. Man
> berechne die Wahrscheinlichkeit,
>  daß die drei Bände des Lexikons nach der Reinigung
> nebeneinander stehen.
>  Hallo, hier erstmal meine Überlegungen.
>  
> Bücher  x
>  Lexikon o
>  
> Nun gibt es 8 mögliche Anordnungen:
>  oooxxxxxxx
>  xoooxxxxxx
>  xxoooxxxxx
>  ...
>  xxxxxxxooo
>  
> Diese Bücher und Lexika können allerdings noch permutieren
> also:  [mm]\bruch{8+7!+3!}{10!}[/mm]
>  edit: Die Möglichkeiten summiere ich auf oder? Hatte
> zuerst multipliziert.

Hallo,

multiplizieren ist richtig.

> Stimmt mein Gedankengang?

Ja.
Ich habe mit einer geringfügig anderen Überlegung dasselbe Ergebnis erhalten.

Gruß v. Angela

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> lg, Danke im Vorraus!


Bezug
                
Bezug
Anordnung von Büchern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 So 08.03.2009
Autor: jeada

Danke erstmal!

Hmm, wieso werden die Möglichkeiten multipliziert? *schäm*

Dürft ich deinen Lösungsweg bitte sehen? Würde mir gern Anregungen für weitere Beispiele holen.

Bezug
                        
Bezug
Anordnung von Büchern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 08.03.2009
Autor: angela.h.b.


> Danke erstmal!
>  
> Hmm, wieso werden die Möglichkeiten multipliziert? *schäm*

Hallo,

stell Dir vor, Du hättest  Teller rot, blau, gelb, lila,  und Tassen in den Farben  rot, blau, gelb.


Du hast folgende Möglichkeiten


Teller        Tassen    
  
rot                rot
                   blau
                   gelb

blau               rot
                   blau
                   gelb

gelb               rot
                   blau
                   gelb

lila                rot
                   blau
                   gelb

Gibt 4*3  Kombinationsmöglichkeiten.
Ebenso ist das bei Deinem Beispiel auch so.


Ich hatte mir das so überlegt:

Die Gesamtanzahl der Möglichkeiten dafür, die Bücher aufzustellen, ist  10!.

Dann habe ich mir vorgestelltt, daß die Lexikonbände fest zusammengeschnürt werden, so daß ich nur 8 Objekte einzuordnen habe:  8! Möglichkeiten

Da die Lexika in verschiedener Reihenfolge stehen können, kommt noch der Faktor 3! hinzu.

Insgesamt  gibt's also 8!*3!  Möglichkeiten, so zu stellen, wie gefordert.

Gruß v. Angela

Bezug
        
Bezug
Anordnung von Büchern: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 So 08.03.2009
Autor: angela.h.b.

Hallo,

ich war so begeistert, daß ich mal ein kombinatorisches Problem lösen konnte, daß mir ganz entgangen ist, daß Du neu bei uns bist:

[willkommenmr]

Gruß v. Angela

Bezug
                
Bezug
Anordnung von Büchern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 08.03.2009
Autor: jeada

Dank dir sehr :) Ich hab schonmal vor nem Jahr oder so eine Frage gestellt ;)

Bin begeistert von dieser community und sollte öfters vorbeisehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]