matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikAnnuitätenrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Annuitätenrechnung
Annuitätenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Annuitätenrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 08.12.2009
Autor: ellzzett

Aufgabe
Eine Hypothekenbank gibt zurzeit für Darlehen mit 15 Jahren Laufzeit und monatlicher Verzinsung einen nominellen Jahreszinssatz von 4,8 % an.

a) Wie hoch sind die monatlich nachschüssigen Annuitätenzahlungen, um eine Schuld von 100.000 € in dieser Zeit vollständig zu tilgen?

b) Welcher Kreditbetrag kann höchstens vereinbart werden, wenn der Kreditnehmer 15 Jahre lang monatlich nachschüssig 500 € aufbringen kann? Geben sie die maximale Kredithöhe in vollen Tausend Euro an.

Ich habe diese Frage in keinem anderen Forum gestellt.

Wollt mal von euch meine Ergebnisse verifizieren lassen ;)

bei a) komm ich auf A=6.881,99€ und bei b) auf [mm] S_{0}=7.265,34€ [/mm]

Danke!

        
Bezug
Annuitätenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Di 08.12.2009
Autor: MathePower

Hallo ellzzett,

> Eine Hypothekenbank gibt zurzeit für Darlehen mit 15
> Jahren Laufzeit und monatlicher Verzinsung einen nominellen
> Jahreszinssatz von 4,8 % an.
>  
> a) Wie hoch sind die monatlich nachschüssigen
> Annuitätenzahlungen, um eine Schuld von 100.000 € in
> dieser Zeit vollständig zu tilgen?
>  
> b) Welcher Kreditbetrag kann höchstens vereinbart werden,
> wenn der Kreditnehmer 15 Jahre lang monatlich nachschüssig
> 500 € aufbringen kann? Geben sie die maximale Kredithöhe
> in vollen Tausend Euro an.
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Wollt mal von euch meine Ergebnisse verifizieren lassen ;)
>  
> bei a) komm ich auf A=6.881,99€ und bei b) auf
> [mm]S_{0}=7.265,34€[/mm]


Die Ergebnisse stimmen, wenn mit einem monatlichen Zinssatz von

[mm]p=\bruch{4.8 \ \operatorname{\%}}{12}=0.4 \ \operatorname{\%}[/mm]

gerechnet wurde.


>  
> Danke!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]