matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauAnnäherung Meßreihe mit Prabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maschinenbau" - Annäherung Meßreihe mit Prabel
Annäherung Meßreihe mit Prabel < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Annäherung Meßreihe mit Prabel: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 10.01.2007
Autor: TsuChungChih

Aufgabe 1
Aufgabe 2
Eine Messreihe {(ti;fi)| i= 1, ... n} soll durch eine Parabel f(t)=A*t² approximiert werden. Finden Sie hierzu den besten Koeffizienten A.

Hinweis: die besten Funktionen minimiert die Summe der quadratischen Fehler E= [mm] \summe_{i=1}^{n} [/mm] |f(ti)-fi|².


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo.
Also ich komme hier absolut einfach nicht weiter. Hab auch nicht wirklich einen geeigneten Ansatz bis jetzt gefunden. Bis jetzt hab ich mir Gedanken gemacht das ich ja eine Parabel habe mit einem Faktor A. Wenn ich den Faktor A immer größer werden lasse weitet sich die Parabel. Denn so wurde mir gesagt um so größer ich einen Messbereich mache um so geringer sind meine Fehler. Mein Problem ist was hat der Hinweis mit meiner Messreihe zu tun und wie kann ich sie anschließend durch die Parabel ausdrücken.

Wäre für jeden Gedanken/Lösung dankbar, ich hoffe einer kann mit meiner Aufgabe was anfangen.

Vielen Dank im voraus

        
Bezug
Annäherung Meßreihe mit Prabel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mi 10.01.2007
Autor: sicktronic

Hallo,

soweit ich weiß nennt sich das Verfahren zur Lösung dieser Aufgabe "Methode der kleinsten Quadrate". Unter diesem Begriff kannst du mal suchen, da müsste sich einiges finden lassen.

Vom Prinzip her ist [mm]E= $ \summe_{i=1}^{n} $ |f(t_i)-f_i|² [/mm] deine Abstandsfunktion welche wie in einer Extremwertaufgabe minimiert werden muss. Aber das ist nur die halbe Wahrheit. Denke mal im Mathe-Bereich dieses Forums wärst du besser beraten.

MfG

Bezug
        
Bezug
Annäherung Meßreihe mit Prabel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 11.01.2007
Autor: chrisno


> Eine Messreihe {(ti;fi)| i= 1, ... n} soll durch eine
> Parabel f(t)=A*t² approximiert werden. Finden Sie hierzu
> den besten Koeffizienten A.
>  
> Hinweis: die besten Funktionen minimiert die Summe der
> quadratischen Fehler E= [mm]\summe_{i=1}^{n}[/mm] |f(ti)-fi|².
>  

Der Hinweis sagt, dass Du das beste A findest, indem Du das Minimum von E bestimmst.
$E = [mm] \summe_{i=1}^{n} [/mm] (A * [mm] t_i^2 [/mm] - [mm] f_i)^2$ [/mm]
Das musst Du nun nach A ableiten und gleich Null setzen. Daraus ergibt sich das "beste" A.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]