matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAngabe des Funktionsterms
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Angabe des Funktionsterms
Angabe des Funktionsterms < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Angabe des Funktionsterms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Mi 13.09.2006
Autor: kimnhi

Könnt ihr mir vielleicht bei den Aufgaben weiterhelfen?
Gegeben sei eine ganzrationale Funktion
f dritten Grades mit den in der
Abbildung angebenen Eigenschaften.

a.Wie lautet der Funktionsterm der Funktion f?

Meine Funktion lautet: f(x)=-0,1875 [mm] x^3+2,25x-3 [/mm]
Stimmt das?

b.Im schraffierten Bereich wird ein Dreieck so einbeschrieben,
dass eine Seite die Gleichung y =-3 hat,
die zweite Seite parallel zur y-Achse verläuft und die
dritte Seite den Schnittpunkt der zweiten Seite mit dem
Graphen und den Wendepunkt miteinander verbindet.

Bei welchem x-Wert muss die zweite Dreiecksseite
liegen, wenn der Flächeninhalt des Dreiecks
maximal werden soll?

Wie gehe ich an diese Aufgabe am Besten ran?

VielenDank!
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Angabe des Funktionsterms: Skizze machen!
Status: (Antwort) fertig Status 
Datum: 10:01 Mi 13.09.2006
Autor: Loddar

Hallo kimnhi!



> Meine Funktion lautet: f(x)=-0,1875 [mm]x^3+2,25x-3[/mm]
> Stimmt das?

[ok] Aber besser ist meist in Bruchdarstellung zu schreiben:

$f(x) \ = \ [mm] -\bruch{3}{16}*x^3+\bruch{9}{4}*x-3$ [/mm]

  

> b.Im schraffierten Bereich wird ein Dreieck so
> einbeschrieben, dass eine Seite die Gleichung y =-3 hat,
> die zweite Seite parallel zur y-Achse verläuft und die
> dritte Seite den Schnittpunkt der zweiten Seite mit dem
> Graphen und den Wendepunkt miteinander verbindet.
>  
> Bei welchem x-Wert muss die zweite Dreiecksseite
> liegen, wenn der Flächeninhalt des Dreiecks maximal werden soll?

Am besten ist fast immer eine Skizze gemäß der Aufgabenstellung:

[Dateianhang nicht öffentlich]

Dabei sehen wir dann, dass es sich hierbei um ein rechtwinkliges Dreieck handelt, dessen Flächeninhalt berechnet wird zu:

[mm] $A_{\Delta} [/mm] \ = \ [mm] \bruch{1}{2}*a*b$ [/mm]

Dabei wird die eine Seite beschrieben durch den x-Wert der senkrechten Geraden (bei mir in der Skizze ist gerade $x \ = \ -2$ . Es gilt also: $a \ = \ x$ .

Die andere Seite wird gebildet durch den Abstand des zugehörigen Funktionswertes $f(x)_$ zum y-Wert des Wendepunktes:

$b \ = \ [mm] f(x)-y_W [/mm] \ = \ [mm] -\bruch{3}{16}*x^3+\bruch{9}{4}*x-3 [/mm] - (-3) \ = \ [mm] -\bruch{3}{16}*x^3+\bruch{9}{4}*x$ [/mm]

Wenn wir das nun in die Flächenformel einsetzen, erhalten wir unser Zielfunktion, von der wir das Maximum ermitteln sollen:

$A(x) \ = \ [mm] \bruch{1}{2}*x*\left(-\bruch{3}{16}*x^3+\bruch{9}{4}*x\right) [/mm] \ = \ ...$

Von dieser Funktion $A(x)_$ nun also Ableitungen bestimmen (zuvor ausmultiplizieren) und Nullstelle(n) der 1. Ableitung etc.


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]