matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertprobleme
Anfangswertprobleme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 29.06.2011
Autor: engels

Aufgabe
Lösen Sie die Anfangswertprobleme:

1) [mm] (x^{2} [/mm] + 1) y' + xy + [mm] \wurzel[]{x^{2}+1} [/mm] = 0; y(1) = 0

2) y' = [mm] \bruch{ln (y^{y})}{ln (x^{x})}; [/mm] y(2) = 8:

Zu 1)

Hier würde ich den Ansatz einer inhomogenen DGL wählen. Nur dort komme ich an einen Punkt, an dem ich eine Stammfunktion zu [mm] \bruch{- \wurzel[]{x^{2}+1}}{x^{2}+1}*e^{0,5*(x^{2}+1)} [/mm] bestimmen muss. Da komme ich nicht weiter.

Zu 2)

Hier habe ich erstmal [mm] \bruch{dy}{dx} [/mm] = [mm] \bruch{ln (y^{y})}{ln (x^{x})} [/mm] gesetzt. Nun suche ich allerdings eine Stammfunktion zu ln [mm] (y^{y}) [/mm] dy bzw. ln [mm] (x^{x}) [/mm] dx.

Kann mir einer einen Rat zum weitermachen geben?

        
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 29.06.2011
Autor: schachuzipus

Hallo engels,

> Lösen Sie die Anfangswertprobleme:
>
> 1) [mm](x^{2}[/mm] + 1) y' + xy + [mm]\wurzel[]{x^{2}+1}[/mm] = 0; y(1) = 0
>
> 2) y' = [mm]\bruch{ln (y^{y})}{ln (x^{x})};[/mm] y(2) = 8:
> Zu 1)
>
> Hier würde ich den Ansatz einer inhomogenen DGL wählen.
> Nur dort komme ich an einen Punkt, an dem ich eine
> Stammfunktion zu [mm]\bruch{- \wurzel[]{x^{2}+1}}{x^{2}+1}*e^{0,5*(x^{2}+1)}[/mm]
> bestimmen muss.

Darauf komme ich nicht. Kannst du bitte etwas von deiner Rechnung präsenieren?!

> Da komme ich nicht weiter.
>
> Zu 2)
>
> Hier habe ich erstmal [mm]\bruch{dy}{dx}[/mm] = [mm]\bruch{ln (y^{y})}{ln (x^{x})}[/mm]
> gesetzt. Nun suche ich allerdings eine Stammfunktion zu ln
> [mm](y^{y})[/mm] dy bzw. ln [mm](x^{x})[/mm] dx.

Nach Trennung ergibt sich doch [mm] $\int{\frac{1}{\ln\left(y^y\right)} \ dy} [/mm] \ = \ [mm] \int{\frac{1}{\ln\left(x^x\right)} \ dx}$ [/mm]

Nun beachte das Logarithmusgesetz [mm] $\log_b\left(a^m\right)=m\cdot{}\log_b(a)$ [/mm]

Das Integral [mm] $\int{\frac{1}{z\cdot{}\ln(z)} \ dz}$ [/mm] kannst du mit der Substitution [mm] $u=u(z):=\ln(z)$ [/mm] erschlagen ...

>
> Kann mir einer einen Rat zum weitermachen geben?

Gruß

schachuzipus


Bezug
                
Bezug
Anfangswertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 29.06.2011
Autor: engels

Also Aufgabe 2) kann ich nun lösen, hierfür erstmal danke.

Zu 1) Ich habe log mit ln vertauscht. Jetzt hier richtig.

Ich forme um, sodass ich

y' + [mm] \bruch{x}{x^{2}+1} [/mm] y = - [mm] \bruch{\wurzel[]{x^{2}+1}}{x^{2}+1} [/mm] erhalte.

Nun kommt die homogene Lösung:

yh = A * [mm] e^{-\integral_{}^{}{f(x) dx}} [/mm] = A * [mm] e^{-\integral_{}^{}{ \bruch{x}{x^{2}+1} dx}} [/mm] = A * [mm] e^{-0,5 ln(x^{2}+1)} [/mm]

Nun die Variation der Konstanten:

yp = u(x) * [mm] e^{-0,5*ln(x^{2}+1)} [/mm]

u'(x) = [mm] \bruch{g(x)}{e^{-0,5 ln(x^{2}+1)}} [/mm] = [mm] \bruch{- \bruch{\wurzel[]{x^{2}+1}}{x^{2}+1}}{e^{-0,5 ln(x^{2}+1)}} [/mm]

Ist mein Vorgehen soweit richtig?



Oke, nun ist mir auch aufgefallen, dass ich vieles vereinfachen kann. Daher nun mal mein aktuelles Endergebnis:
y(x) = [mm] \bruch{1}{\wurzel[]{x^{2}+1}}*(1-x)[/mm]

Bezug
                        
Bezug
Anfangswertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 29.06.2011
Autor: MathePower

Hallo engels,

> Also Aufgabe 2) kann ich nun lösen, hierfür erstmal
> danke.
>  
> Zu 1) Ich habe log mit ln vertauscht. Jetzt hier richtig.
>  
> Ich forme um, sodass ich
>
> y' + [mm]\bruch{x}{x^{2}+1}[/mm] y = -
> [mm]\bruch{\wurzel[]{x^{2}+1}}{x^{2}+1}[/mm] erhalte.
>  
> Nun kommt die homogene Lösung:
>  
> yh = A * [mm]e^{-\integral_{}^{}{f(x) dx}}[/mm] = A *
> [mm]e^{-\integral_{}^{}{ \bruch{x}{x^{2}+1} dx}}[/mm] = A * [mm]e^{-0,5 ln(x^{2}+1)}[/mm]
>  
> Nun die Variation der Konstanten:
>  
> yp = u(x) * [mm]e^{-0,5*ln(x^{2}+1)}[/mm]
>  
> u'(x) = [mm]\bruch{g(x)}{e^{-0,5 ln(x^{2}+1)}}[/mm] = [mm]\bruch{- \bruch{\wurzel[]{x^{2}+1}}{x^{2}+1}}{e^{-0,5 ln(x^{2}+1)}}[/mm]
>  
> Ist mein Vorgehen soweit richtig?
>
>
> Oke, nun ist mir auch aufgefallen, dass ich vieles
> vereinfachen kann. Daher nun mal mein aktuelles
> Endergebnis:
>  y(x) = [mm]\bruch{1}{\wurzel[]{x^{2}+1}}*(1-x)[/mm]  


[ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]