matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeAnfangswertproblem/lineare DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Anfangswertproblem/lineare DGL
Anfangswertproblem/lineare DGL < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem/lineare DGL: Vortest Höhere Mathematik
Status: (Frage) beantwortet Status 
Datum: 18:41 Do 27.12.2012
Autor: rauebertochter87

Aufgabe
Aufgabe 1:

Lösen Sie die folgenden Anfangswertprobleme:

a) y’ + y = [mm] y^2(cos(x) [/mm] + sin(x)); y(0) = 1
b) (y’ + 1)(y + x) = 1; y(0) = 2
c) y’’ = x [mm] \* [/mm] y’ [mm] \* [/mm] (y’ - 1); y(0) = 0; y’(0) = 1

Aufgabe 2:

Geben Sie eine allgemeine Lösung des inhomogenen, linearen DGL-Systems [mm] \vec{y} [/mm] = [mm] A\vec{y} +~\vec{b}(x) [/mm] mit
A [mm] =\pmat{ 0 & 1 \\ -4x^2 & 1/x }, \vec{b}(x)=\vektor{x \\ 8x²} [/mm]

an. Verwenden Sie dabei die Lösung aus Aufgabe 1 des 8. Tutoriumsblattes,

Anfangswertproblem für x > 0

[mm] \vec{y} [/mm] ' = [mm] \pmat{ 0 & 1 \\ -4x^2 & 1/x } [/mm]
[mm] \vec{y} (\wurzel{\pi/2}) [/mm] = [mm] \vektor{0 \\ 0} [/mm]

[mm] \vec{y_{1}}(x) [/mm] = [mm] \vektor{cos(x^2) \\ -2x sin(x^2)} [/mm] , [mm] \vec{y_{2}}(x) [/mm] = [mm] \vektor{sin(x^2) \\ 2x cos(x^2)} [/mm]
sowie die Tatsache,
dass
[mm] \vec{y_{2}}(x) [/mm] = [mm] \vektor{-cos(x^2)+1 \\ 2x sin(x^2)} [/mm]

Lösung des inhomogenen DGL-Systems für [mm] \vec{b}(x) [/mm] = [mm] \vektor{0 \\ 4x^2} [/mm]

ist.

Aufgabe 3:

Gegeben ist die Matrix
A = [mm] \pmat{ -2 & 3 & -3 \\ -5 & 6 & -5 \\ -2 & 2 & -1 } [/mm]

a)Bestimmen Sie eine Lösungsbasis von [mm] \vec{y} [/mm] ' = A [mm] \vec{y} [/mm] mit Hilfe der Methode der Hauptvektoren.

Hinweis: der Ansatz (A - [mm] \lambda E)\vec{x} [/mm] = [mm] \vec{v} [/mm] (Hauptvektorkette) führt in diesem Fall nicht zur
Lösung. Man sollte also zur Berechnung der Hauptvektoren die Definition anwenden.
b) Erläutern Sie die Bedeutung des Hauptvektors (ca. zwei Sätze

Ich habe arge Probleme bei der Lösung und bin fast am verzweifeln.
Sehr dankbar wäre ich, wenn mir ein Experte den Lösungsweg verraten könnte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anfangswertproblem/lineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 27.12.2012
Autor: leduart

Hallo
so ganz einfach ohne selbstbeteiligung gibts bei uns keine Hilfe.
aber erstmal 1 Tip
1b) u=y+x
1c) u=y'
einsetzen
Was ist das kursive y in a)?
3, bzw eigentlich 6 Aufgaben in einem post schreckt Helfer nur ab.
Poste die Aufgaben einzeln und gib deine bisherigen Schritte  oder Versuche dazu an.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]