matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:09 So 05.08.2012
Autor: teo

Aufgabe
Geben Sie für das Anfangswertproblem

[mm] y'=\wurzel{y^2-1}; y(0) = 1 [/mm]

eine zweiparametrige Schar von Lösungen an.

Hallo,

ich komm einfach nicht auf die Lösung. Mit Tdv wirds nix und mit Substitution komm ich auch nicht weiter.

Mit TdV erhalte ich zum Beispiel (mit Formelsammlung)

[mm] y'=\wurzel{y^2-1} \Rightarrow \integral \frac{1}{\wurzel{y^2-1}} dy = \integral dx \Rightarrow ln(c(y+\wurzel{y^2-1})) = x + C \Rightarrow c(y+\wurzel{y^2-1}) = e^{x+C} [/mm] hier hörts dann auf. Darf ich das überhaupt machen wie wäre das denn geschickter?

Vielen Dank!

Grüße

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 05.08.2012
Autor: MathePower

Hallo teo,

> Geben Sie für das Anfangswertproblem
>
> [mm]y'=\wurzel{y^2-1}; y(0) = 1[/mm]
>  
> eine zweiparametrige Schar von Lösungen an.
>  Hallo,
>  
> ich komm einfach nicht auf die Lösung. Mit Tdv wirds nix
> und mit Substitution komm ich auch nicht weiter.
>
> Mit TdV erhalte ich zum Beispiel (mit Formelsammlung)
>  
> [mm]y'=\wurzel{y^2-1} \Rightarrow \integral \frac{1}{\wurzel{y^2-1}} dy = \integral dx \Rightarrow ln(c(y+\wurzel{y^2-1})) = x + C \Rightarrow c(y+\wurzel{y^2-1}) = e^{x+C}[/mm]
> hier hörts dann auf. Darf ich das überhaupt machen wie
> wäre das denn geschickter?
>  


Mit der Substitution [mm]y=\cosh\left(t\right)[/mm] ist es geschickter.


> Vielen Dank!
>  
> Grüße


Gruss
MathePower

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 05.08.2012
Autor: teo

Hallo,

ok. Aber das ist ja dann auch sofort die Lösung oder denn cosh(0)=1 und cosh'(t)=sinh(t) = [mm] \wurzel{cosh^2(t).-1}. [/mm]

Was ist denn jetzt noch mit der zweiparametrigen Schar gemeint?

Vielen Dank!

Grüße

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 05.08.2012
Autor: MathePower

Hallo teo,

> Hallo,
>  
> ok. Aber das ist ja dann auch sofort die Lösung oder denn
> cosh(0)=1 und cosh'(t)=sinh(t) = [mm]\wurzel{cosh^2(t).-1}.[/mm]
>  
> Was ist denn jetzt noch mit der zweiparametrigen Schar
> gemeint?
>  


Wahrscheinlich ist hier die implizite Form der Lösung gemeint:

[mm]y-\cosh\left(x\right)=0[/mm]


> Vielen Dank!
>  
> Grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]