matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 01.10.2018
Autor: StudMWT

Aufgabe
Lösen Sie das Anfangswertproblem
[mm] \dot{x(t)} [/mm] = x(t) - [mm] x^2(t), [/mm]   x(0)=2.

Bestimmen Sie [mm] \limes_{t\rightarrow\infty} [/mm] x(t).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kann den ersten Teil dieser Aufgabe leider nicht lösen, da ich nicht weiß wie ich an diese Aufgabe herangehen soll.

Den zweiten Teil mit lim bekomme ich dann schon hin.

ps.: auf der linken Seite soll ein Punkt für die Ableitung nach der Zeit über dem x sein.

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 01.10.2018
Autor: fred97


> Lösen Sie das Anfangswertproblem
>  [mm]\dot{x(t)}[/mm] = x(t) - [mm]x^2(t),[/mm]   x(0)=2.
>  
> Bestimmen Sie [mm]\limes_{t\rightarrow\infty}[/mm] x(t).
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich kann den ersten Teil dieser Aufgabe leider nicht
> lösen, da ich nicht weiß wie ich an diese Aufgabe
> herangehen soll.


Tipp: für die allgemeine Lösung der Differentialgleichung verwende Trennung der Variablen.


>  
> Den zweiten Teil mit lim bekomme ich dann schon hin.
>  
> ps.: auf der linken Seite soll ein Punkt für die Ableitung
> nach der Zeit über dem x sein.  


Bezug
                
Bezug
Anfangswertproblem: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:08 Mo 01.10.2018
Autor: StudMWT

Danke für den Hinweise, so komme ich aber nur fast auf das Ergebnis. Ich bilde dann ja die Stammfunktion zu dem Bruch [mm] 1/(x-x^2). [/mm]
Da kommt dann ja der ln mit Betrag drin vor und x muss größer als 1 sein.

Wenn ich dann beide Seiten mit e berechne komme ich aber auf das falsche Ergebnis.

Habe ich da evtl. Rechenregeln nicht korrekt befolgt?

Bezug
                        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Mo 01.10.2018
Autor: fred97


> Danke für den Hinweise, so komme ich aber nur fast auf das
> Ergebnis. Ich bilde dann ja die Stammfunktion zu dem Bruch
> [mm]1/(x-x^2).[/mm]
>  Da kommt dann ja der ln mit Betrag drin vor und x muss
> größer als 1 sein.
>  
> Wenn ich dann beide Seiten mit e berechne komme ich aber
> auf das falsche Ergebnis.
>  
> Habe ich da evtl. Rechenregeln nicht korrekt befolgt?

Tja, ohne Deine Rechnungen werden wir  das nie erfahren




Bezug
                                
Bezug
Anfangswertproblem: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 Mi 03.10.2018
Autor: StudMWT

Hier nun mein erster Rechenweg. mit der e-Funktion bekomme ich den ln ja weg, aber dennoch komme ich nicht weiter (oder gar auf das korrekte Ergebnis).

[Dateianhang nicht öffentlich]



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Do 04.10.2018
Autor: fred97

Du schreibst

[mm] $\ln (|\frac{1}{x}-1|)=t$ [/mm]

Dabei hast Du die Integrationskonstante vergessen. Richtig ist

(*) [mm] $\ln (|\frac{1}{x}-1|)=t+c$. [/mm]

Nun solltest Du die Anfangsbedingung x(0)=2 ins Spiel bringen:

es ist [mm] \frac{1}{x(0)}-1= -\frac{1}{2}<0. [/mm] Daher wird aus (*):

[mm] $\ln (1-\frac{1}{x})=t+c$. [/mm]

Mit x(0)=2 bekommt man $c=- [mm] \ln [/mm] 2$, also

[mm] $\ln (1-\frac{1}{x})=t-\ln [/mm] 2$.

Wenn Du die letzte Gl. nach x auflöst, solltest Du das korrekte Ergebnis bekommen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]