matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 So 21.12.2014
Autor: Rzeta

Aufgabe
Wir suchen Lösungen des Anfangswertproblems (AWP)

y''(x)+2y'(x)+3y(x)=4cos(x), y(0)=-1, y'(0)=1

a) Bestimmen Sie das charaktieristische Polynom der homogenen gewöhnlichen Differentialgleichung y''+2y'+3y=0 sowie dessen Nullstellen.  Um welchen Typen linearer, homogener GDE zweiter Ordnung hendelt ese sich (Typ1, Typ2 oder Typ 3)

b) Bestimmen Sie eine Basis des Läsungsraums von y''+2y'+3y=0 mit reellwertigen Basisfunktionen. Bestimmen Sie die gesamte Läsungsmenge dieser DGL. Welche Struktur (bzgl. der Vektorraumtheorie) besitz diese?

c) Verwenden Sie den Ansatz [mm] y_0=\gamma_1cos(x)+\gamma_2sin(x) [/mm] um eine Lösung der inhomogenen DGL y''+2y'+3y=4cos zu finden

d) Wie lauztet die allgemeine Lösungsmenge der inhomogenen DGL y''+2y'+3y=4cos? Welche Struktur (bzgl. der Vektorraumtheorie) besitzt diese?

e) Lösen Sie das oben gestellte Anfangswertproblem

Hallo,

unser Prof. hat beschlossen mitten in der Linearen Algebra einen Ausflug in die Welt der Differentialgleichungen zu machen. Ich habe das Skript vor mir liegen aber das hätte er genauso gut auf Spanisch drucken können weil absolut kein Wort verstehe. Da kurz vor Weihnachten auch keine Studentenbüros und Studentensprechstunden mehr offen haben wäre ich euch wirklich sehr dankbar wenn Ihr mit mir dieses Problem "durchgehen" könntet. Ich möchte keine Lösung sondern nur verstehen bzw. selber ausrechen was hier verlangt wird.

Ich beginne mal bei a):

Im Skript steht folgendes:

Wir nennen [mm] p(x)=x^2+ax+b [/mm] das charakteristische Polynom. Ist [mm] \lambda [/mm] eine Nullstlle von p, so gilt für die druch [mm] y(x)=e^{\lambda x} [/mm] definierte Funktion

[mm] y''(x)+ay'(x)+by(x)=\lambda^2e^{\lambda x} +a\lambdae^{\lambda x} +be^{\lambda x} =(\lambda^2+\lambda+b)y(x)=0 [/mm]

Ich werde hieraus überhaupt nicht schlau und habe null Ahnung was hier überhaupt gemacht werden soll. Über jegliche Hilfe würde ich mich sehr freuen.

Liebe Grüße

Rzeta



        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 21.12.2014
Autor: fred97

DAs

http://www.fbmn.h-da.de/~ochs/mathe3/skript/dgl2.pdf

hilft Dir weiter

FRED

Bezug
                
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 So 21.12.2014
Autor: Rzeta

Danke! Ich lese es mir gleich durch und hoffe das ich dann die Fragen beantworten kann.

Liebe Grüße

Rzeta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]