matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenAnfangsrandw.-Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Anfangsrandw.-Problem
Anfangsrandw.-Problem < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangsrandw.-Problem: Erklärung
Status: (Frage) beantwortet Status 
Datum: 00:54 Do 29.04.2010
Autor: Hubert12

Aufgabe
Und zwar soll man die Funktion f(x) = 3/8 sin (2x) - 1/8 sin (4x) in eine Fourierreihe entwickeln und die Lösung des Anfangsrandwertproblems bestimmen.

Weiters:
[mm] \bruch{\delta u)}{(\delta t} [/mm] = [mm] \bruch{\delta^2 u)}{(\delta x^2} [/mm]  mit 0 < x < [mm] \pi, [/mm] t > 0

u(0,x) = [mm] \bruch{3}{8} [/mm] sin (2x) - [mm] \bruch{1}{8} [/mm] sin (4x)

u(t,0) = u(t,pi) = 0

So weit so gut. Ich bin folgendermaßen vorgegangen:
- Hab mir die spez. Lösung hergeleitet, die folgendermaßen aussehen sollte:

[mm] u_{n}(t,x) [/mm] = [mm] c_{n} [/mm] * [mm] e^{-(\bruch{n^2*\pi^2)}{L^2 }*t} [/mm] * sin [mm] \bruch{(n*\pi*x)}{L} [/mm]

Superpositiosprinz.:
u(t,x) =  [mm] \summe_{n=1}^{\infty} c_{n} [/mm] * [mm] e^{-(\bruch{n^2*\pi^2)}{L^2 }*t} [/mm] * sin [mm] \bruch{(n*\pi*x)}{L} [/mm]

- Ok, die Koeffizienten [mm] c_{n} [/mm] bekomme ich, wenn ich mir die Anfangsbedingung ansehe:
    Es soll geleten: u(0,x) =  [mm] c_{n} [/mm] * [mm] e^{-(\bruch{n^2*\pi^2)}{L^2 }*t} [/mm] * sin [mm] \bruch{(n*\pi*x)}{L} [/mm]
      Das stimmt für die Koeffizienten n=2 (mit [mm] c_{2} [/mm] = [mm] \bruch{3}{8}) [/mm] und n=4 (mit [mm] c_{4} [/mm] = [mm] -\bruch{1}{8}) [/mm]

- Die Fourierreihe hätte ich jetzt anhand der oben erhaltenen Koeffizienten ermittelt, indem ich die Glieder der erhaltenen Koeffizienten in die Lösung (siehe Superpositiosprinz. oben) einsetze. Daraus ergibt sich dann:

u(t,x) = [mm] \bruch{3}{8} [/mm] * [mm] e^{-(\bruch{4*\pi^2)}{L^2 }*t} [/mm] * sin [mm] \bruch{(2*\pi*x)}{L} [/mm] - [mm] \bruch{1}{8} [/mm] * [mm] e^{-(\bruch{16*\pi^2)}{L^2 }*t} [/mm] * sin [mm] \bruch{(4*\pi*x)}{L} [/mm]

So, das wäre jetzt meine Fourierreihe. Die Frage die ich mir stelle ist nun allerdings, wie ich die Randbedingungen testen kann/muss. Dass die Anfangsbedingung erfüllt ist habe ich meiner Ansicht nach :-) ja schon oben gezeigt, als ich u(0,x) = f(x) gesetzt habe und daraus die Koeffizienten bestimmt habe. Wie kann ich allerdings zeigen, dass die Randbedingungen u(t,0) = u(t,pi) = 0 auch erfüllt sind?
Oder habe ich das schon dadurch gezeigt, dass ich spez. Lösung hergeleitet (ganz oben) hergeleitet habe?

Vielleicht kann mir ja bitte jemand weiterhelfen. Vor allem über ein paar erklärende Worte darüber wie man am besten so eine Randwertaufgabe angeht und was man wie am Besten zeigen kann, würden mir enorm helfen (wie man sieht bin ich darin eher ungeübt bzw. setz mich überhaupt zum ersten mal mit so einer Problemstellung auseinander). Vielen Dank!!

Lg
  Hubert

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Anfangsrandw-Problem

bekomme aber leider keine Antwort :-(


        
Bezug
Anfangsrandw.-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Di 18.05.2010
Autor: MathePower

Hallo Hubert12,


[willkommenmr]


> Und zwar soll man die Funktion f(x) = 3/8 sin (2x) - 1/8
> sin (4x) in eine Fourierreihe entwickeln und die Lösung
> des Anfangsrandwertproblems bestimmen.
>  
> Weiters:
>  [mm]\bruch{\delta u)}{(\delta t}[/mm] = [mm]\bruch{\delta^2 u)}{(\delta x^2}[/mm]
>  mit 0 < x < [mm]\pi,[/mm] t > 0

>  
> u(0,x) = [mm]\bruch{3}{8}[/mm] sin (2x) - [mm]\bruch{1}{8}[/mm] sin (4x)
>  
> u(t,0) = u(t,pi) = 0
>  
> So weit so gut. Ich bin folgendermaßen vorgegangen:
>   - Hab mir die spez. Lösung hergeleitet, die
> folgendermaßen aussehen sollte:
>  
> [mm]u_{n}(t,x)[/mm] = [mm]c_{n}[/mm] * [mm]e^{-(\bruch{n^2*\pi^2)}{L^2 }*t}[/mm] * sin
> [mm]\bruch{(n*\pi*x)}{L}[/mm]


Diese Funktion erfüllt die Randbedingungen

[mm]u\left(t.0\right)=u\left(t,\pi \right)=0[/mm]

nicht.

Vielmehr muss diese lauten:

[mm]u_{n}(t,x) = c_{n} *e^{-n^{2}*t} * sin\left(n*x\right)[/mm]


>  
> Superpositiosprinz.:
>  u(t,x) =  [mm]\summe_{n=1}^{\infty} c_{n}[/mm] *
> [mm]e^{-(\bruch{n^2*\pi^2)}{L^2 }*t}[/mm] * sin
> [mm]\bruch{(n*\pi*x)}{L}[/mm]
>  
> - Ok, die Koeffizienten [mm]c_{n}[/mm] bekomme ich, wenn ich mir die
> Anfangsbedingung ansehe:
>      Es soll geleten: u(0,x) =  [mm]c_{n}[/mm] *
> [mm]e^{-(\bruch{n^2*\pi^2)}{L^2 }*t}[/mm] * sin
> [mm]\bruch{(n*\pi*x)}{L}[/mm]
>        Das stimmt für die Koeffizienten n=2 (mit [mm]c_{2}[/mm] =
> [mm]\bruch{3}{8})[/mm] und n=4 (mit [mm]c_{4}[/mm] = [mm]-\bruch{1}{8})[/mm]
>  
> - Die Fourierreihe hätte ich jetzt anhand der oben
> erhaltenen Koeffizienten ermittelt, indem ich die Glieder
> der erhaltenen Koeffizienten in die Lösung (siehe
> Superpositiosprinz. oben) einsetze. Daraus ergibt sich
> dann:
>  
> u(t,x) = [mm]\bruch{3}{8}[/mm] * [mm]e^{-(\bruch{4*\pi^2)}{L^2 }*t}[/mm] *
> sin [mm]\bruch{(2*\pi*x)}{L}[/mm] - [mm]\bruch{1}{8}[/mm] *
> [mm]e^{-(\bruch{16*\pi^2)}{L^2 }*t}[/mm] * sin [mm]\bruch{(4*\pi*x)}{L}[/mm]
>  
> So, das wäre jetzt meine Fourierreihe. Die Frage die ich
> mir stelle ist nun allerdings, wie ich die Randbedingungen
> testen kann/muss. Dass die Anfangsbedingung erfüllt ist
> habe ich meiner Ansicht nach :-) ja schon oben gezeigt, als
> ich u(0,x) = f(x) gesetzt habe und daraus die Koeffizienten
> bestimmt habe. Wie kann ich allerdings zeigen, dass die
> Randbedingungen u(t,0) = u(t,pi) = 0 auch erfüllt sind?
>  Oder habe ich das schon dadurch gezeigt, dass ich spez.
> Lösung hergeleitet (ganz oben) hergeleitet habe?
>  
> Vielleicht kann mir ja bitte jemand weiterhelfen. Vor allem
> über ein paar erklärende Worte darüber wie man am besten
> so eine Randwertaufgabe angeht und was man wie am Besten
> zeigen kann, würden mir enorm helfen (wie man sieht bin
> ich darin eher ungeübt bzw. setz mich überhaupt zum
> ersten mal mit so einer Problemstellung auseinander).
> Vielen Dank!!
>
> Lg
>    Hubert
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://www.onlinemathe.de/forum/Anfangsrandw-Problem
>  
> bekomme aber leider keine Antwort :-(
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]