matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationAnf.-Randwertproblem imhomogen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Anf.-Randwertproblem imhomogen
Anf.-Randwertproblem imhomogen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anf.-Randwertproblem imhomogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 06.12.2014
Autor: Teryosas

Aufgabe
Lösen Sie das folgende Anfangs-Randwertproblem für die inhomogene Wärmeleitungsgleichung:
[mm] \bruch{\partial u}{\partial t}(x,t)=\bruch{\partial^2 u}{\partial x^2}(x,t)+3tsin(2x) [/mm] für 0 [mm] \le x\le \pi [/mm] , [mm] t\ge [/mm] 0

[mm] u(0,t)=u(\pi [/mm] ,t)=0 für [mm] t\ge [/mm] 0                  u(x,0)=0 für [mm] 0\le x\le \pi [/mm]

hey,

also hier dürfte der allgemeine Ansatz sein:
[mm] u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{L}x) [/mm] für [mm] 0\le x\le [/mm] L, [mm] t\ge [/mm] 0
da bei mir [mm] L=\pi [/mm] ist komme ich auf
[mm] u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{\pi}x)=\summe_{n=1}^{\infty}b_{n}(t)sin(n*1*x) [/mm] für [mm] 0\le x\le \pi, t\ge [/mm] 0

jetzt muss ich die  zeitabhängige Fourier-Entwicklung aufstellen um den zeitabhängigen Koeffizienten [mm] b_{n}(t) [/mm] zu bestimmen
[mm] f(x,t)=\summe_{n=1}^{\infty}f_{n}(t)sin(nx) [/mm] für [mm] 0\le x\le \pi, t\ge [/mm] 0

falls ich bis hierher richtig bin komme ich nicht weiter.
hier mal meine Vermutung:

[mm] \summe_{n=1}^{\infty}sin(nx)[(\bruch{nc\pi}{\pi})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)]=\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc}{1})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)] [/mm] = 0
wenn ich nun nur die eckige Klammer betrachte:
[mm] \bruch{nc}{1}^2*b_{n}(t)+b_{n}'(t) [/mm] = [mm] f_{n}(t) [/mm]
Aber wie komme ich jetzt auf die Koeffizienten [mm] b_{1}(t), b_{2}(t)....??? [/mm]

        
Bezug
Anf.-Randwertproblem imhomogen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Sa 06.12.2014
Autor: MathePower

Hallo Teryosas,

> Lösen Sie das folgende Anfangs-Randwertproblem für die
> inhomogene Wärmeleitungsgleichung:
>  [mm]\bruch{\partial u}{\partial t}(x,t)=\bruch{\partial^2 u}{\partial x^2}(x,t)+3tsin(2x)[/mm]
> für 0 [mm]\le x\le \pi[/mm] , [mm]t\ge[/mm] 0
>  
> [mm]u(0,t)=u(\pi[/mm] ,t)=0 für [mm]t\ge[/mm] 0                  u(x,0)=0
> für [mm]0\le x\le \pi[/mm]
>  hey,
>  
> also hier dürfte der allgemeine Ansatz sein:
>  [mm]u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{L}x)[/mm]
> für [mm]0\le x\le[/mm] L, [mm]t\ge[/mm] 0


Das kommt schlussendlich  für die homogene Lösung auch heraus.


>  da bei mir [mm]L=\pi[/mm] ist komme ich auf
> [mm]u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{\pi}x)=\summe_{n=1}^{\infty}b_{n}(t)sin(n*1*x)[/mm]
> für [mm]0\le x\le \pi, t\ge[/mm] 0
>
> jetzt muss ich die  zeitabhängige Fourier-Entwicklung
> aufstellen um den zeitabhängigen Koeffizienten [mm]b_{n}(t)[/mm] zu
> bestimmen
>  [mm]f(x,t)=\summe_{n=1}^{\infty}f_{n}(t)sin(nx)[/mm] für [mm]0\le x\le \pi, t\ge[/mm]
> 0

>


Ja.

  

> falls ich bis hierher richtig bin komme ich nicht weiter.
>  hier mal meine Vermutung:
>  
> [mm]\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc\pi}{\pi})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)]=\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc}{1})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)][/mm]
> = 0


Hast Du hier etwa Variation der Konstanten angewendet?


>  wenn ich nun nur die eckige Klammer betrachte:
>  [mm]\bruch{nc}{1}^2*b_{n}(t)+b_{n}'(t)[/mm] = [mm]f_{n}(t)[/mm]
>  Aber wie komme ich jetzt auf die Koeffizienten [mm]b_{1}(t), b_{2}(t)....???[/mm]
>  


Da wird Dir nicht anderes übrigbleiben,
als die entstandene DGL zu lösen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]