matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAnderer Weg als JNF
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Anderer Weg als JNF
Anderer Weg als JNF < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anderer Weg als JNF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 14.01.2008
Autor: nahpets87

Aufgabe
Bringe die Matrix [mm] \pmat{ 4 & 7 & 1 & 0 \\ 7 & 1 & 1 & 7 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 0 & 0} [/mm] durch geeigneten Basiswechsel auf die Form:

[mm] \pmat{1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1} [/mm]

So,

Gesucht sind ja zwei Matrizen, S und T so dass gilt:

S*A*T^-1 = B (wenn B die 2. Matrix ist und A die 1.)

Man überprüft also auf Ähnlichkeit.

Wir hatte die Begriffe Eigenwert und so weiter noch nicht. Ein Freund meinte aber das man die Aufgabe mit sowas lösen müsste.
http://www.danielwinkler.de/la/jnfkochrezept.pdf

Diesen Link hat er mir empfohlen, aber wir haben dass in der Übung vollkommen anders gemacht. Kennt jemand da noch ein anderes Verfahren?

Mir fällt jetzt noch etwas ein:
Warum kann ich nicht einfach sagen, dass T die Matrix A sein soll und S die Matrix B.

Dann gilt SAT^-1 = B, weil A * A^-1 = E ist und S * E = B.

Was wäre dann die neue Basis?


        
Bezug
Anderer Weg als JNF: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 14.01.2008
Autor: Alex__

Hi,

die Äquivalenzrelation "Ähnlichkeit zweier Matrizen" (bzw. dazu äquivalent zweier Endomorphismen) ist wie folgt definiert:

Zwei Matrizen [mm]A, B \in M_{nn}(K)[/mm] heißen ähnlich (oder konjugiert), wenn es eine invertierbare Matrix T gibt, so dass gilt:

A = T-1 · B ·T.

Beachte den Unterschied zu dem, was Du geschrieben hast. M.E. kann es kein "einfacheres" Verfahren geben. Das Konzept um die JNF zu berechnen ist die sog. Filtrierung. Man muss einen nilpotenten Teil und die entsprechende Diagonalform berechnen und beide Teile in der JNF vereinigen. In Sonderfällen fällt ein Teil weg, dann ist die Berechnung "einfacher", doch im Allg. kommt man um die Filtrierung (bzw. Berechnung des Eigenraums) nicht drum herum.

LG
Alex

Bezug
                
Bezug
Anderer Weg als JNF: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:35 Mo 14.01.2008
Autor: nahpets87

Moin!

Danke für die Antwort.

Du hast recht, ich hab Ähnlichkeit mit Äquivalenz verwechselt. (Wobei wir in unserer Vorlesung Ähnlichkeit aber mit S*A*S^-1, nicht mit S^-1*A*S definiert haben, weiss nicht ob das ein Unterschied ist.)

Aber das ist im Prinzip ja unerheblich für die Aufgabe. Es war ja  nichts von einer Ähnlichkeits- oder Äquivalenzprüfung verlangt. Hätte das lieber weglassen sollen, sorry.

Okay, Basiswechsel bedeutet doch mit einer geeigneten Transformationsmatrix zu multiplizieren. Zumindest sieht ein Basiswechsel einer Abbildung die durch die Matrix A gegeben ist doch immer in etwa so aus: B = S*A*T, wobei S und T irgendwelche Matrizen sind die von der neuen Basis abhängen.

Im Prinzip ist es ja genauso, nur dass wir die Matrix B gegeben haben und S und T suchen und nicht wie sonst S und T ableiten können.

Allerdings geht das Herausfinden von S und T doch ganz einfach hier, nämlich einfach so: Sei S = A^-1 und T = B
Dann hätten wir nämlich erstmal [mm] A^1 [/mm] * A, das ist E und E*B = B!

Wo mach ich hier meinen Denkfehler?? Ist evt. nur A*A^-1 = E ?!

Bezug
        
Bezug
Anderer Weg als JNF: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 14.01.2008
Autor: angela.h.b.

Hallo,

Du denkst hier sehr schematisch an Transformationsmatrizen.

Ich würde diese Aufgabe mit viel mehr "Handarbeit" bearbeiten.

[mm] A:=\pmat{ 4 & 7 & 1 & 0 \\ 7 & 1 & 1 & 7 \\ 1 & 1 & 0 & 0 \\ 1 & 4 & 0 & 0} [/mm]

kann ich auffassen als die darstellende Matrix einer linearen Abbildung [mm] f:\IR^4 \to \IR^4 [/mm] bzgl. der Standardbasis [mm] E:=(e_1,...,e_4) [/mm]  mit f(x):=Ax.

Ich suche  nun eine Basis [mm] B:=(b_1,...,b_4) [/mm] mit

[mm] f(e_1)=\vektor{1 \\ 0\\0\\0}_B=b_1, [/mm]

[mm] f(e_2)=\vektor{1 \\ 1\\0\\0}_B=b_1+b_2, [/mm]

[mm] f(e_3)=\vektor{0 \\ 1\\1\\0}_B=b_2+b_3, [/mm]

[mm] f(e_4)=\vektor{0 \\ 0\\1\\1}_B=b_3+b_4. [/mm]

Wenn ich solch eine Basis B finde, ist  A':=
$ [mm] \pmat{1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1} [/mm] $ die darstellende Matrix dieser Abbildung bzgl. E und B.

Dann fange ich an:

[mm] b_1:=f(e_1) [/mm]

[mm] b_2:=f(e_2)-b_1 [/mm]

usw.

Zeige dann, daß [mm] B:=(b_1,...,b_4) [/mm] eine Basis mit der geforderten Eigenschaft ist, die Transformationsmatrix anzugeben ist dann ja nicht schwierig.
(Du brauchst nur eine, denn die Basis E im Ausgangsraum behalten wir ja).

Gruß v. Angela











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]