matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAnalytische Geometrie / Analys
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Analytische Geometrie / Analys
Analytische Geometrie / Analys < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie / Analys: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Do 06.12.2012
Autor: RobinAliasPuck

Aufgabe
Aufgabenstellung:

Gegeben sei ein Punkt C(0|3|4)

Analytische Geometrie:

a.) Lässt man den Ortsvektor von C um die x1-Achse rotieren, so entsteht eine Rotationsfigur. Welche Form und welchen Flächeninhalt hat diese Figur?

b.) Lässt man den Ortsvektor von C um die x3-Achse rotieren, so entsteht ein Rotationskörper in Form eines Kegels. Berechnen Sie sein Volumen.

c.) Durch den Schnitt mit einer Ebene soll dieser Kegel 1 LE niedriger werden. Geben Sie die Gleichung einer geeigneten Ebene in Koordinatenform an.

Analysis:

d.) Stellen Sie eine Gleichung auf für eine lineare Funktion f, die den Ortsvektor von C enthält. Schränken Sie dann den Difinitionsbereich der Funktion f so ein, dass ihr Graph genau dem Ortsvektor von C entspricht.

e.) Lassen Sie den Funktionsgraphen nun an der x2-Achse rotieren und berechnen Sie das Volumen des so entstehenden Kegels mit Hilfe des Integrals über der Querschnittsfunktion.

f.) Nun sollen Höhe und Radius des Kegels so verändert werden, dass bei gleichlang bleibender Seitenkante s sein Volumen möglichst groß wird.

Welche Länge haben dann Radius und Höhe des Kegels?

Welches Volumen hat der Kegel dann?

Eigene Idee:

Ok also bei der Aufgabe...

a.) wird durch den gegebenen Vektor ein Kreis gebildet um dessen Fläche zu berechnen muss ich den Vektor, der hier den Radius darstellt in eine der folgenden Formeln einsetzten:

A= [mm] Pi*r^2 [/mm]

bzw.

A= [mm] (Pi*d^2) [/mm] / 4

Könnte ich ich an dieser Stelle die LÄNGE des Vektors für r einsetzen? Sprich die Länge ist die Wurzel aus der Summe der Komponentenquadrate. So in etwa: Wurzel aus [mm] (0^2+3^2+4^2) [/mm]

b.) um das Volumen des Kegels zu berechnen brauche ich die Höhe, den Radius und die Länge der Seite des Kegels.
Der Radius ist die Zahl 3, die ich dem Vektor entnehmen kann und der Vektor selbst stellt die Länge der Seite des Kegels dar. Was die Höhe betrifft so ist deren Länge um ein paar Einheiten kleiner als die Länge des Vektors. Soweit richtig, oder irre ich mich?
Auch hier stellt sich mir die Frage, wie ich den Vektor in die Formel einbetten soll.

c.) hier bin ich mir etwas unsicher. Ich soll eine Ebene finden, die den Kegel um eine Längeneinheit verkürzt, aber wie das?

d.) eine lineare Funktion ist doch nichts anderes als eine Gerade, nicht wahr? D.h. Ich muss eine Geradengleichung aufstellen mit einem Stützvektor und einem Richtungsvektor. Kann ich den Ortsvektor als Stütsvektor verwenden? Und wie soll ich das mit dem Difinitionsbereich machen?

e.) diesen Teil der Aufgabe kann ich leider Gottes nicht verstehen.
Welcher Funktionsgraph ist gemeint? Die Gerade aus d.)? Was ist in der Aufgabe genau gefordert?

f.) soll ich an dieser Stelle den Kegel aus e.) Strecken? Falls ja, dann wie genau?

Leser und Helfer,

ich muss eine Vorabi-Leistung halten und das ist die Übungsaufgabe dazu.
Es wäre mir sehr geholfen, wenn mir jemand genauesten, also Schritt für Schritt erklären könnte, wie man die Aufgaben löst und wie die jeweiligen Lösungen lauten.
Das würde mir u.a. als Selbstkontrolle dienen und so könnte ich bestmöglichst das Verfahren nachvollziehen können.
Ich bin nicht dumm, was Mathe betrifft, aber es sind oft die Verständigungsschwierigkeiten bzw. die komplizierten Lösungswege, die mir das Fach so fremd erscheinen lassen.
Ich kann sowieso nicht verstehen, weshalb man Sachverhalte immer so kompliziert und unüberschaubar zu lösen versucht, wenn es doch auch ganz einfach gehen kann.

Naja ich möchte an dieser Stelle jedem danken, der das überhaupt bis zum Ende gelesen hat und natürlich auch denen, die gewillt sind mir zu helfen.

Liebe Grüße
RobinAliasPuck

P.S.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.onlinemathe.de/forum/Analytische-Geometrie-Analysis-Rotation%E2%80%8F

http://www.matheboard.de/thread.php?threadid=508545

        
Bezug
Analytische Geometrie / Analys: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Do 06.12.2012
Autor: leduart

Hallo
> Aufgabenstellung:
>  
> Gegeben sei ein Punkt C(0|3|4)
>  
> Analytische Geometrie:
>  
> a.) Lässt man den Ortsvektor von C um die x1-Achse
> rotieren, so entsteht eine Rotationsfigur. Welche Form und
> welchen Flächeninhalt hat diese Figur?
>
> b.) Lässt man den Ortsvektor von C um die x3-Achse
> rotieren, so entsteht ein Rotationskörper in Form eines
> Kegels. Berechnen Sie sein Volumen.
>
> c.) Durch den Schnitt mit einer Ebene soll dieser Kegel 1
> LE niedriger werden. Geben Sie die Gleichung einer
> geeigneten Ebene in Koordinatenform an.
>
> Analysis:
>
> d.) Stellen Sie eine Gleichung auf für eine lineare
> Funktion f, die den Ortsvektor von C enthält. Schränken
> Sie dann den Difinitionsbereich der Funktion f so ein, dass
> ihr Graph genau dem Ortsvektor von C entspricht.
>  
> e.) Lassen Sie den Funktionsgraphen nun an der x2-Achse
> rotieren und berechnen Sie das Volumen des so entstehenden
> Kegels mit Hilfe des Integrals über der
> Querschnittsfunktion.
>
> f.) Nun sollen Höhe und Radius des Kegels so verändert
> werden, dass bei gleichlang bleibender Seitenkante s sein
> Volumen möglichst groß wird.
>
> Welche Länge haben dann Radius und Höhe des Kegels?
>  
> Welches Volumen hat der Kegel dann?
>  Eigene Idee:
>  
> Ok also bei der Aufgabe...
>  
> a.) wird durch den gegebenen Vektor ein Kreis gebildet um
> dessen Fläche zu berechnen muss ich den Vektor, der hier
> den Radius darstellt in eine der folgenden Formeln
> einsetzten:
>
> A= [mm]Pi*r^2[/mm]
>  
> bzw.
>  
> A= [mm](Pi*d^2)[/mm] / 4
>  
> Könnte ich ich an dieser Stelle die LÄNGE des Vektors
> für r einsetzen? Sprich die Länge ist die Wurzel aus der
> Summe der Komponentenquadrate. So in etwa: Wurzel aus
> [mm](0^2+3^2+4^2)[/mm]

nicht etwa, sondern genau und du kannst direkt [mm] r^2=3^2+4^2 [/mm] =25 einsetzen.

>  
> b.) um das Volumen des Kegels zu berechnen brauche ich die
> Höhe, den Radius und die Länge der Seite des Kegels.
> Der Radius ist die Zahl 3, die ich dem Vektor entnehmen
> kann und der Vektor selbst stellt die Länge der Seite des
> Kegels dar. Was die Höhe betrifft so ist deren Länge um
> ein paar Einheiten kleiner als die Länge des Vektors.
> Soweit richtig, oder irre ich mich?

zeichne einen Schnitt des Kegels, dann sollte dir Herr Pythagoras helfen die Höhe zu bestimmen.

> Auch hier stellt sich mir die Frage, wie ich den Vektor in
> die Formel einbetten soll.
>
> c.) hier bin ich mir etwas unsicher. Ich soll eine Ebene
> finden, die den Kegel um eine Längeneinheit verkürzt,
> aber wie das?

die Höhe soll 1 kurzer werden. in welcher ebene liegt denn jetzt der Kreis, dass die Ebene senkrecht zu [mm] x_3 [/mm] ist ist dir klar, also Parallel zu ? und im Anstand h dazu, spater beim verkürzten Kegel h-1

> d.) eine lineare Funktion ist doch nichts anderes als eine
> Gerade, nicht wahr? D.h. Ich muss eine Geradengleichung
> aufstellen mit einem Stützvektor und einem
> Richtungsvektor. Kann ich den Ortsvektor als Stütsvektor
> verwenden? Und wie soll ich das mit dem Difinitionsbereich

Nein, du hast einen Vektor in der x2,x3 Ebene darin kannst du die Gerase als x3=m*x2 ausdrücken und wie in der x-y Ebene weiter machen.
x2 läuft dabei nur bis zum Ende deines Vektors, also von 0 bis  3 das ist das eingeschränkte Def-Gebiet.
später mehr, ich muss weg.
wieder da

> e.) diesen Teil der Aufgabe kann ich leider Gottes nicht
> verstehen.
> Welcher Funktionsgraph ist gemeint? Die Gerade aus d.)? Was
> ist in der Aufgabe genau gefordert?

genau, jetzt sollst du die Gerade um x2 rotieren lassen. Rotationskörper habt ihr sicher gehabt

> f.) soll ich an dieser Stelle den Kegel aus e.) Strecken?
> Falls ja, dann wie genau?

du sollst ihn so ändern, dass die Länge des Vektors (5) gleichbleibt, aber seine Steigung darf sich ändern, du musst also sehen, wie m von der länge abhängt, dann ddas Geradenstück mit diesem m wieder rotieren und davon das max. bestimmen

> Leser und Helfer,
>  
> ich muss eine Vorabi-Leistung halten und das ist die
> Übungsaufgabe dazu.
> Es wäre mir sehr geholfen, wenn mir jemand genauesten,
> also Schritt für Schritt erklären könnte, wie man die
> Aufgaben löst und wie die jeweiligen Lösungen lauten.
> Das würde mir u.a. als Selbstkontrolle dienen und so
> könnte ich bestmöglichst das Verfahren nachvollziehen
> können.
> Ich bin nicht dumm, was Mathe betrifft, aber es sind oft
> die Verständigungsschwierigkeiten bzw. die komplizierten
> Lösungswege, die mir das Fach so fremd erscheinen lassen.
> Ich kann sowieso nicht verstehen, weshalb man Sachverhalte
> immer so kompliziert und unüberschaubar zu lösen
> versucht, wenn es doch auch ganz einfach gehen kann.
>
> Naja ich möchte an dieser Stelle jedem danken, der das
> überhaupt bis zum Ende gelesen hat und natürlich auch
> denen, die gewillt sind mir zu helfen.

Du hast gute vorarbeit geleistet, und da das ja deine Eigenleistung werden soll keine genaueren ausarbeitungen. nachfragen kannst du ja.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]