matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAnalytische Geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Analytische Geometrie
Analytische Geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Aufgabe c und d
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:37 Mo 04.12.2006
Autor: Grassi18

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[]www.emath.de

also, ich hab folgende Aufgaben:

[Dateianhang nicht öffentlich]


so a und b hab ich schon, aber ich weiß überhaupt nicht wie ich das bei c und d machen soll!

bitte helft mir!

danke im vorraus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Analytische Geometrie: erste Ansätze
Status: (Antwort) fertig Status 
Datum: 10:22 Mi 06.12.2006
Autor: Loddar

Hallo Grassi!


Die Normalenvektoren der beiden Ebenen [mm] $E_t$ [/mm] und [mm] $E_t^{\star}$ [/mm] lauten ja (ich benenne mal um in [mm] $t_1$ [/mm] und [mm] $t_2$): [/mm]

[mm] $\vektor{3t_1\\4t_1\\5}$ [/mm] und [mm] $\vektor{3t_2\\4t_2\\5}$ [/mm]


Damit die beiden Ebenen nun senkrecht aufeinander stehen, muss dies auch für ihre Normalenvektoren gelten.

Und damit muss das entsprechende MBSkalarprodukt den Wert $0_$ ergeben:

[mm] $\vektor{3t_1\\4t_1\\5}*\vektor{3t_2\\4t_2\\5} [/mm] \ = \ ... \ =\ 0$


Forme nun mal um bis zu [mm] $t_1*t_2 [/mm] \ = \ ...$ und hast damit den ersten Schritt gemacht.


Anschließend machen wir dann weiter ...


Gruß
Loddar


Bezug
                
Bezug
Analytische Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Mi 06.12.2006
Autor: Grassi18

juhu danke!

also ich hab das jetzt gemacht:

3t * 3t*+4t * 4t* + 25=0
9tt* + 16tt* = -25
25tt* = -25
tt* = -1
t= - [mm] \bruch{1}{t*} [/mm]

muss ich das jetzt in Et einsetzen?

Bezug
                        
Bezug
Analytische Geometrie: Tipp
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 06.12.2006
Autor: Loddar

Hallo Grassi!


> 3t * 3t*+4t * 4t* + 25=0
>  9tt* + 16tt* = -25
>  25tt* = -25
>  tt* = -1
>  t= - [mm]\bruch{1}{t*}[/mm]

[ok]


> muss ich das jetzt in Et einsetzen?

Ich würde zunächst die Schnittpunkte der Ebenen mit der [mm] $x_3$-Achse [/mm] bestimmen und dann Einsetzen.


Tipp:  Geradengleichung der [mm] $x_3$-Achse $\vec{x}_3 [/mm] \ = \ [mm] \vektor{0\\0\\0}+\lambda*\vektor{0\\0\\1} [/mm] \ = \ \ ... \ = \ [mm] \vektor{0\\0\\ \lambda}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Analytische Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 06.12.2006
Autor: Grassi18

ok, das wäre dann ja

5 [mm] \lambda [/mm] = 15t
[mm] \lambda [/mm] = 3t

Bt (0/0/3t)
Bt* (0/0/3t*)

richtig?

und wenn ich jetzt t= - [mm] \bruch{1}{t*} [/mm] in Et einsetze

[mm] 3(-\bruch{1}{t*})x +4(-\bruch{1}{t*})y [/mm] + 5z - [mm] 15(-\bruch{1}{t*}) [/mm] = 0

aba ich weiß nich wie ich das zusammenfasse

Bezug
                                        
Bezug
Analytische Geometrie: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 06.12.2006
Autor: Loddar

Hallo Grassi!


> ok, das wäre dann ja
>  
> 5 [mm]\lambda[/mm] = 15t
>  [mm]\lambda[/mm] = 3t
>  
> Bt (0/0/3t)
> Bt* (0/0/3t*)

[ok] Genau. Und durch Einsetzen wissen wir auch: [mm] $B_t^{\star} [/mm] \ = \ [mm] \left( \ 0 \ ; \ 0 \ ; 3*\left(-\bruch{1}{t}\right) \ \right) [/mm] \ = \ [mm] \left( \ 0 \ ; \ 0 \ ; -\bruch{3}{t} \ \right)$ [/mm]

  

> und wenn ich jetzt t= - [mm]\bruch{1}{t*}[/mm] in Et einsetze

Das ist nicht nötig, da auch nicht gefragt.

Bestimme nun den Abstand [mm] $d_t$ [/mm] zwischen den beiden oben ermittelten Schnittpunkten [mm] $B_t$ [/mm] und [mm] $B_t^{\star}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]