matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenAnalysis Klausur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Analysis Klausur
Analysis Klausur < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis Klausur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 03.03.2015
Autor: OxOO1

Aufgabe
Bestimmen Sie für die Funktion [mm] $f:\mathbb{R}\rightarrow \mathbb{R}$ [/mm] mit $f(x) = [mm] x^5 [/mm] - 5x, x [mm] \in \mathbb{R}$, [/mm] das Taylor-Polynom [mm] $T_3(x)$ [/mm] zu der Entwicklungsstelle [mm] $x_0 [/mm] = -1$

Hallo ich würde gerne mit euch mal eine Analysis Klausur durchrechnen um mir beim nächsten Versuch das Leben etwas zu vereinfachen. Ich war mir bei dieser Prüfung sehr sicher das ich mindestens 50% der Aufgaben korrekt berechnet habe, allerdings war das wohl ein Fehler. Darum würde ich gerne noch einmal alles so vorrechnen wie ich es in der Klausur gemacht habe und mit eurer Hilfe die restlichen Fehler beseitigen. Ich beginne  mal mit der Aufgabe 1.

Zuerst bestimmen wir die ersten 3 Ableitungen der gegebenen Funktion:
$f'(x) = [mm] 5x^4-5$ [/mm]
$f''(x) = [mm] 20x^3$ [/mm]
$f'''(x) = [mm] 60x^2$ [/mm]

Nun berechnen wir die Werte der Funktion, sowie der Ableitungen an der Entwicklungsstelle:
$f(x) = 4$
$f'(x) = 0$
$f''(x) = -20$
$f'''(x) = 60$

Jetzt setzen wir in die Taylor-Formel ein und berechnen [mm] $T_3(x)$: [/mm]

[mm] $T_3(x)=4 [/mm] - [mm] \frac{20}{2!} \cdot (x+1)^2 [/mm] + [mm] \frac{60}{3!} \cdot (x+1)^3=4-10 \cdot (x+1)^2 [/mm] + 10 [mm] \cdot (x+1)^3$ [/mm]

Ist das so ausreichend und korrekt berechnet ?
Vielen Dank schonmal und Gruß,

OxOO1

        
Bezug
Analysis Klausur: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Di 03.03.2015
Autor: chrisno


>  
> Nun berechnen wir die Werte der Funktion, sowie der
> Ableitungen an der Entwicklungsstelle:
>  [mm]f(x) = 4[/mm]
>  [mm]f'(x) = 0[/mm]
>  [mm]f''(x) = -20[/mm]
>  [mm]f'''(x) = 60[/mm]
>  

Hier verlierst Du Punkte. Es muss heißen:
[mm]f(-1) = 4[/mm]
[mm]f'(-1) = 0[/mm]
[mm]f''(-1) = -20[/mm]
[mm]f'''(-1) = 60[/mm]

Ansonsten finde ich Dein Rechnung korrekt. Ob das formal den Ansprüchen genügt, kann ich ohne weitere Informationen nicht ergründen.

Bezug
                
Bezug
Analysis Klausur: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Di 03.03.2015
Autor: OxOO1

Ja natürlich du hast Recht vielen Dank, leider passieren mir sehr häufig
solche Fehler beim aufschreiben. Vielen Dank Ich schreibe mal die zweite Aufgabe und meine Rechnung dazu auf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]