matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAnalysis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Analysis
Analysis < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Integral
Status: (Frage) beantwortet Status 
Datum: 21:59 Sa 20.02.2010
Autor: AnikaBrandes

hi, wie integriere ich


[mm] \integral\bruch{3x-2}{x^{2}-6x+13} [/mm]

Anika

        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 20.02.2010
Autor: schachuzipus

Hallo Anika,

> hi, wie integriere ich
>  
>
> [mm]\integral\bruch{3x-2}{x^{2}-6x+13}[/mm]

Faktorisiere den Nenner (Nullstellen bestimmen) und mache eine Partialbruchzerlegung:

[mm] $\frac{3x-2}{x^2-6x+13}=\frac{A}{x-x_1}+\frac{B}{x-x_2}$ [/mm]

Dann hast du eine leicht zu integrierende Summe ...

>  
> Anika

LG

schachuzipus

Bezug
                
Bezug
Analysis: integral
Status: (Frage) beantwortet Status 
Datum: 22:19 Sa 20.02.2010
Autor: AnikaBrandes

Das Problem welches ich hierbei habe ist, dass wenn ich die Nullstellen bestimme diese gleich komplexe Zahlen sind:

[mm] 3\pm\wurzel{\bruch{36}{4}-13} [/mm]

deshalb weiß ich nicht, wie ich weiterrechnen soll
Viel Grüße
Anika

Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Sa 20.02.2010
Autor: schachuzipus

Hallo nochmal,

> Das Problem welches ich hierbei habe ist, dass wenn ich die
> Nullstellen bestimme diese gleich komplexe Zahlen sind:
>  
> [mm]3\pm\wurzel{\bruch{36}{4}-13}[/mm]
>  
> deshalb weiß ich nicht, wie ich weiterrechnen soll

Mea culpa, tut mir leid, ich hatte die [mm] $\red{+}13$ [/mm] im Nenner als $-13$ gelesen ...

So gibt's keine reellen NSTen

Also neuer Ansatz:

[mm] $\int{\frac{3x-2}{x^2-6x+13} \ dx}=\frac{3}{2}\cdot{}\int{\frac{2x-\frac{4}{3}}{x^2-6x+13} \ dx}$ [/mm]

[mm] $=\frac{3}{2}\cdot{}\left[\int{\frac{2x-6}{x^2-6x+13} \ dx} \ + \ \frac{14}{3}\cdot{}\int{\frac{1}{x^2-6x+13} \ dx}\right]$ [/mm]

Nun ist das erste Integral ein logarithmisches, also von der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$ [/mm]

Das hat bekanntlich die Stfkt. [mm] $\ln(|f(x)|)+C$ [/mm]

(zu berechnen per Substitution $u=u(x):=f(x)$

Für das hintere mache eine quadr. Ergänzung im Nenner und erinnere dich an das Integral

[mm] $\int{\frac{1}{z^2+1} \ dz}=\arctan(z)+C$, [/mm] und du wirst auf eine entsprechende Substitution kommen ...


>  Viel Grüße
> Anika


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]