matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAnalyse eines Argumentes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Analyse eines Argumentes
Analyse eines Argumentes < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analyse eines Argumentes: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 18.01.2005
Autor: Olek

Diesmal komm ich nicht ganz soweit, weil ich leider nicht genau weiß, was die Aufgabe verlangt, die da lautet:
Analysieren sie das folgende Argument: Aus  [mm] a^{t} [/mm] = -a folgt det a = 0, denn det a = det [mm] (a^{t}) [/mm] = det (-a) = -det a.
det a = det [mm] (a^{t}) [/mm] = det (-a) = -det a sollte richtig sein, so wie ich es nachgerechnet habe, aber was soll man denn dann machen? Soll man zeigen, dass immer wenn [mm] a^{t} [/mm] = -a ist, det a = 0 ist, aber wozu dann der Rest?? Wäre schön wenn ihr mir nochmal helfen könntet, es geht immerhin um die Klausurzulassung ;)
Schönen Dank,
Olek

        
Bezug
Analyse eines Argumentes: Argumentationsanalyse
Status: (Antwort) fertig Status 
Datum: 18:55 Di 18.01.2005
Autor: Marcel

Hallo Olek,

> Diesmal komm ich nicht ganz soweit, weil ich leider nicht
> genau weiß, was die Aufgabe verlangt, die da lautet:
>  Analysieren sie das folgende Argument: Aus  [mm]a^{t}[/mm] = -a
> folgt det a = 0, denn det a = det [mm](a^{t})[/mm] = det (-a) = -det
> a.
>  det a = det [mm](a^{t})[/mm] = det (-a) = -det a sollte richtig
> sein, so wie ich es nachgerechnet habe, aber was soll man
> denn dann machen? Soll man zeigen, dass immer wenn [mm]a^{t}[/mm] =
> -a ist, det a = 0 ist, aber wozu dann der Rest?? Wäre schön
> wenn ihr mir nochmal helfen könntet, es geht immerhin um
> die Klausurzulassung ;)

Ich hoffe, dass $a$ eine Matrix sein soll? Ich bevorzuge dafür den großen Buchstaben, also dein $a$ ist bei mir dann ein $A$.
Falls es um Matrizen geht (was anderes fällt mir auch gerade nicht ein, um was es sonst gehen könnte?):
Betrachte mal die $2 [mm] \times [/mm] 2$-Matrix [m]A:=\left(\begin{matrix}0 & -1\\ 1 & 0\end{matrix}\right) \in \IR^{2 \times 2}[/m].
Dann gilt offenbar:
[m]A^t=\left(\begin{matrix}0 & 1\\ -1 & 0\end{matrix}\right)=-A[/m]

Aber wie sieht es nun mit [m]\mbox{det}(-A)[/m] aus? Gilt tatsächlich:
[mm]\mbox{det}(-A)=-\mbox{det}(A)[/mm]?

PS: Falls [mm] $a^t=-a$, [/mm] dann stimmt (mit deinen Bezeichnungen) jedenfalls [m]\mbox{det}(a)=\mbox{det}(a^t)=\mbox{det}(-a)[/m].
Nur die Gleichheit [m]\mbox{det}(-a)=-\mbox{det}(a)[/m] ist/war in der Argumentation fraglich!

Viele Grüße,
Marcel

Bezug
                
Bezug
Analyse eines Argumentes: Da hapert es schon ...
Status: (Frage) beantwortet Status 
Datum: 19:10 Di 18.01.2005
Autor: Olek

Vielen Dank!
War das dann schon eine Analyse, wenn ic einfach ein Gegenbeispiel bringe, oder muß ich das dann noch besonders erläutern? Das Wort Analyse lese ich jetzt nämlich zum ersten Mal in einer Aufgabe und ich weiß nicht ganz genau wie umfangreich meine Ausführungen dann sein müßen.
MfG,
Olek

Bezug
                        
Bezug
Analyse eines Argumentes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Di 18.01.2005
Autor: Marcel

Hallo Olek!

> Vielen Dank!
>  War das dann schon eine Analyse, wenn ic einfach ein
> Gegenbeispiel bringe, oder muß ich das dann noch besonders
> erläutern? Das Wort Analyse lese ich jetzt nämlich zum
> ersten Mal in einer Aufgabe und ich weiß nicht ganz genau
> wie umfangreich meine Ausführungen dann sein müßen.

Ich denke, dass du die Argumentationskette auf Richtigkeit prüfen solltest. Da du nun ja eine Matrix kennst, die [m]A^t=-A[/m] erfüllt, obwohl [m]\mbox{det}(-A)\not=-\mbox{det}(A)[/m] gilt, ist die Argumentation an der Stelle, wo [m]\mbox{det}(-A)=-\mbox{det}(A)[/m] steht, fehlerhaft.
Somit folgt aus [m]A^t=-A[/m] i.A. nicht [m]\mbox{det}(A)=0[/m], wie man auch an dem Gegenbeispiel erkennt.
Fazit: Das Gegenbeispiel sollte (meiner Meinung nach) genügen. Übrigens, so als kleiner Hinweis, wie ich diese Matrix [mm] ($\in \IR^{2 \times 2}$) [/mm] "konstruiert" habe:
Überlege dir, dass aus [m]A^t=-A[/m] dann folgt, dass die Diagonalelemente von $A$ alle $=0$ sein müssen. Der Rest dürfte klar sein!

Viele Grüße,
Marcel

Bezug
                                
Bezug
Analyse eines Argumentes: Alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Di 18.01.2005
Autor: Olek

Cool, jetzt ist das glaub ich alles soweit klar. Vielen Dank, Olek

Bezug
                                        
Bezug
Analyse eines Argumentes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Mi 19.01.2005
Autor: Marcel

Hallo Olek,

> Cool, jetzt ist das glaub ich alles soweit klar. Vielen
> Dank, Olek

Das freut mich. Viel Erfolg bei der Klausur! :-)

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]