matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenAlternative gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Alternative gesucht
Alternative gesucht < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Do 08.10.2009
Autor: Dinker

Guten Abend


Für welchen reelen Wert von a sind die folgenden Vektoren komplanar.

[mm] \vektor{3 \\ a \\ a^{2} }, \vektor{1 \\ 1 \\ a }, \vektor{2 \\ 0 \\ a} [/mm]

Also eben mit dem Verfahren:

b* [mm] \vektor{3 \\ a \\ a^{2} }, [/mm] c* [mm] \vektor{1 \\ 1 \\ a }, [/mm] d* [mm] \vektor{2 \\ 0 \\ a} [/mm] =  [mm] \vektor{0 \\ 0 \\ 0}, [/mm] wird das überaus mühsam.

Wer präsentiert mir einen Alternativweg?

Danke
Gruss Dinker




        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 08.10.2009
Autor: XPatrickX

Ich kenne nicht dein Vorwissen.
Eine Möglichkeit wäre die Vektoren in eine Matrix zu schreiben und überprüfen ob die [mm] \det=0 [/mm] ist.

Bezug
                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Do 08.10.2009
Autor: Dinker

Hallo

gerne nehme ich den Ratschlag entgegen. Jedoch bin ich auf ausführliche Erklärung angewiesen.

Danke
Gruss Dinker

Bezug
                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Do 08.10.2009
Autor: schachuzipus

Hallo Dinker,

leider ist dein Ausgangspost etwas daneben geraten, bearbeite das mal bitte.

Es scheint mir um die Vektoren [mm] $\vektor{3\\a\\a^2}, \vektor{1\\1\\a}, \vektor{2\\0\\a}$ [/mm] zu gehen.

Wie mein Vorredner sagt, schreibe diese als Spalten in eine Matrix A

[mm] $A=\pmat{3&1&2\\a&1&0\\a^2&a&a}$ [/mm]

Nun bestimme - etwa mit der []Regel von Sarrus - die Determinante von A, also $det(A)$.

Diese ergibt sich in Abhängigkeit von a.

Für diejenigen [mm] $a\in\IR$, [/mm] für die $det(A)=0$ ist, sind die Vektoren linear abhängig.

Gruß

schachuzipus



Bezug
                                
Bezug
Alternative gesucht: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:41 Do 08.10.2009
Autor: Dinker

Hallo

Kannst du mir die Determinante vorrechnen? Bitte, ich wäre sehr dankbar.

Danke
Gruss Dinker

Bezug
                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Do 08.10.2009
Autor: schachuzipus

Hallo nochmal,

> Hallo
>  
> Kannst du mir die Determinante vorrechnen? Bitte, ich wäre
> sehr dankbar.

Das denke ich mir ...

Ich rechne es dir vor, nachdem du einen eigenen Versuch gestartet und gepostet hast (und es nicht stimmen sollte).

Wie es geht, steht sehr anschaulich auf der verlinkten Seite erklärt ...

>  
> Danke
>  Gruss Dinker

LG

schachuzipus

Bezug
                                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Do 08.10.2009
Autor: Dinker

Hallo


3a + 0 + [mm] 2a^2 [/mm] + [mm] 2a^2 [/mm] + 0 + [mm] a^2 [/mm]

Und?

Bezug
                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Do 08.10.2009
Autor: schachuzipus

Hallo Dinker,

> Hallo
>  
>
> 3a + 0 + [mm]2a^2[/mm] + [mm]2a^2[/mm] + 0 + [mm]a^2[/mm]
>  
> Und?

Das ist schon sehr gut, allerdings musst du die Produkte auf der Nebendiagonalen subtrahieren, daher sind die Vorzeichen bei den letzten 3 Summanden flasch.

Richtig ist [mm] $det(A)=3a+0+2a^2\red{-}2a^2\red{-}0\red{-}a^2=3a-a^2$ [/mm]

Nun prüfe, für welche(s) [mm] $a\in\IR$ [/mm] das 0 ergibt ...

Gruß

schachuzipus


Bezug
                                                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 08.10.2009
Autor: Dinker

Hallo

Einfach wie ein normales Gleichungssystem behandeln?

a1 = 0
a2 = 3

Gruss Dinker

Bezug
                                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 08.10.2009
Autor: schachuzipus

Hallo nochmal,

> Hallo
>  
> Einfach wie ein normales Gleichungssystem behandeln?

Wenn du so willst, ja: ein Gleichungssystem mit einer Gleichung ;-)

>  
> a1 = 0 [ok]
>  a2 = 3 [ok]

Gut!

LG

schachuzipus

>  
> Gruss Dinker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]