matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenAllgemeine Lösung einer DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Allgemeine Lösung einer DGL
Allgemeine Lösung einer DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lösung einer DGL: Korrekturlesung
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 05.12.2008
Autor: Marcel08

Aufgabe
Bestimmen Sie die allgemeine Lösung der Differentialgleichung

[mm] y^{,,}-2xy^{,}-2y=0. [/mm]

Verwenden Sie, dass [mm] y_{1}(x)=e^{{x^{2}}} [/mm] eine spezielle Lösung dieser Differentialgleichung ist. Hinweis: Das letzte Integral lässt sich nicht explizit lösen und kann einfach als Integral angegeben werden.

Hallo liebe Matheraum- Community,

es wäre sehr nett, wenn jemand mal über die Lösung meiner Aufgabe schauen könnte. Stimmt meine Berechnung?



Wir haben


[mm] y^{,,}-2xy^{,}-2y=0, [/mm] mit [mm] y_{1}(x)=e^{x^{2}}, a_{1}(x)=-2x [/mm] und [mm] a_{2}(x)=1 [/mm]



Wir lösen das Integral


[mm] -\integral_{}^{}{\bruch{a_{1}(x)}{a_{2}(x)}dx}=x^{2} [/mm]



und berechnen nun


[mm] y_{2}(x)=e^{x^{2}}\integral_{}^{}{\bruch{e^{x^{2}}}{(e^{x^{2}})^{2}} dx} [/mm]



Wir erhalten


[mm] y_{2}(x)=e^{x^{2}}\integral_{}^{}{\bruch{1}{e^{x^{2}}}dx} [/mm]



Auflösung des Integrals liefert


[mm] y_{2}(x)=e^{x^{2}}*\bruch{1}{2}{\wurzel{\pi}}*erf(x) [/mm]



Für die Gesamtlösung erhalten wir also


[mm] y(x)=e^{x^{2}}(c_{1}+c_{2}*\bruch{1}{2}{\wurzel{\pi}}*erf(x)), [/mm] mit [mm] c_{1},c_{2}\in\IR [/mm]



Ich bedanke mich bereits im Voraus. Gruß,





Marcel

        
Bezug
Allgemeine Lösung einer DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Fr 05.12.2008
Autor: MathePower

Hallo Marcel08,

> Bestimmen Sie die allgemeine Lösung der
> Differentialgleichung
>  
> [mm]y^{,,}-2xy^{,}-2y=0.[/mm]
>  
> Verwenden Sie, dass [mm]y_{1}(x)=e^{{x^{2}}}[/mm] eine spezielle
> Lösung dieser Differentialgleichung ist. Hinweis: Das
> letzte Integral lässt sich nicht explizit lösen und kann
> einfach als Integral angegeben werden.
>  Hallo liebe Matheraum- Community,
>  
> es wäre sehr nett, wenn jemand mal über die Lösung meiner
> Aufgabe schauen könnte. Stimmt meine Berechnung?
>  
>
>
> Wir haben
>
>
> [mm]y^{,,}-2xy^{,}-2y=0,[/mm] mit [mm]y_{1}(x)=e^{x^{2}}, a_{1}(x)=-2x[/mm]
> und [mm]a_{2}(x)=1[/mm]
>  
>
>
> Wir lösen das Integral
>
>
> [mm]-\integral_{}^{}{\bruch{a_{1}(x)}{a_{2}(x)}dx}=x^{2}[/mm]
>  
>
>
> und berechnen nun
>  
>
> [mm]y_{2}(x)=e^{x^{2}}\integral_{}^{}{\bruch{e^{x^{2}}}{(e^{x^{2}})^{2}} dx}[/mm]
>  
>
>
> Wir erhalten
>  
>
> [mm]y_{2}(x)=e^{x^{2}}\integral_{}^{}{\bruch{1}{e^{x^{2}}}dx}[/mm]
>  
>
>
> Auflösung des Integrals liefert
>  
>
> [mm]y_{2}(x)=e^{x^{2}}*\bruch{1}{2}{\wurzel{\pi}}*erf(x)[/mm]
>  
>
>
> Für die Gesamtlösung erhalten wir also
>  
>
> [mm]y(x)=e^{x^{2}}(c_{1}+c_{2}*\bruch{1}{2}{\wurzel{\pi}}*erf(x)),[/mm]
> mit [mm]c_{1},c_{2}\in\IR[/mm]
>  
>


Stimmt. [ok]


>
> Ich bedanke mich bereits im Voraus. Gruß,
>  
>
>
>
>
> Marcel


Gruß
MathePower

Bezug
                
Bezug
Allgemeine Lösung einer DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 So 07.12.2008
Autor: Marcel08

Danke schön.!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]