matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenAllg. zu Matrizen + Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Allg. zu Matrizen + Gauß
Allg. zu Matrizen + Gauß < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. zu Matrizen + Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Mo 21.10.2013
Autor: Kartoffelchen

Aufgabe
Hallo;
ein paar kurze Fragen zu Matrizen und dem Gaußschen Eliminationsverfahren für Gleichungssysteme:

1.) Umformen eines gegebenen Gleichungssystems in die Form Ax = b
2.) Allgemeines Schema des Gauß-Algorithmus.

Zu 1.)

Beispiel:
$ [mm] ax_1 [/mm] + [mm] bx_2 [/mm] + [mm] cx_3 [/mm] = [mm] b_1 [/mm] $
$ [mm] dx_1 [/mm] + [mm] ex_2 [/mm] + [mm] fx_3 [/mm] = [mm] b_2 [/mm] $
...

Bedeutet die Form "Ax = b" folgendes?:

[mm] $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix} [/mm] = [mm] \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} [/mm] $

2.) Wie beschreibe ich den Vorgang beim Gaußschen Eliminationsverfahren, bei dem alle Zeilen (außer I) mit Hilfe von I so umgeformt werden, dass die erste Variable (bei I ungleich 0) eliminiert wird.
Anschließend wird I fixiert und alle Zeilen (außer II) mit Hilfe von II ...

Gibt's da einen Programmiercode oder eine schöne Formulierung, um so etwas an einer Tafel zu zeigen?


        
Bezug
Allg. zu Matrizen + Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Mo 21.10.2013
Autor: leduart

Hallo
Du hast richtig in Ax=b umgeformt.
einen anderen Namen  für das weiter vorgehen kenn ich nicht, besser finde ich " Es wird ein Vielfaches der ersten Zeile so addiert, dass der erste Koeffizient verschwindet. die erste Zeile bleibt. danach dasselbe mit der  zweiten Zeile usw, bis man eine obere Dreiecksmatrix erzeugt hat.
Natürlich gibts Programme dafür, oder was meinst du ?
besser die Koeffizienten nicht mit dem ganzen Alphabet benennen, sondern [mm] a_{11} [/mm] ...bis [mm] a_{nn} [/mm]
benennen.
dann Anfang: mult I mit -(a{21}/a{11} und addiere zu II
usw so kannst du ein "Tafelprogramm" aufschreiben.
schoner wird es, wenn man immer 1 sen erzeugt. sieh dir
die Seite
http://www.arndt-bruenner.de/mathe/scripts/gleichungssysteme.htm
mit Lösungen an.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]