matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAllg. Vektoräume, Teilräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Allg. Vektoräume, Teilräume
Allg. Vektoräume, Teilräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Vektoräume, Teilräume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:51 Do 02.12.2004
Autor: Christinchen

Hallo

folgende Aufgabe bringt mich zur Verzweiflung. Ich muß die morgen abgeben und die hat immerhin 8 Punkte die ich dringend brauche. Also wende ich mich mal an euch.

Aufgabe:

Wir betrachten die Menge [mm] \IR^{\IN} := \{(a_{n})_{n \in \IN} | a_{n} \in \IR \forall n \in \IN \} [/mm] der reelen Zahlenfolgen. Anstelle von [mm] {(a_{n})_{n \in \IN} [/mm] schreiben wir kurz [mm] (a_{n}) [/mm]. Durch die Vorschriften :

[mm] (a_{n})+(b_{n}):= (a_{n}+b_{n}) \lambda(a_{n}):= ( \lambda a_{n}) [/mm]

werden Abbildungen Plus: [mm] \IR^{\IN} x \IR^{\IN} \to \IR^{\IN} [/mm] und Mal: [mm] \IR [/mm] x  [mm] \IR^{\IN} \to \IR^{\IN} [/mm] [/mm] definiert.

a) Zeigen sie das [mm] \{ \IR^{\IN} , \IR , Plus, Mal \} [/mm] ein Vektoraum ist.

b) Zeigen Sie: Für jedes [mm] m \in \IN [/mm] gibt es [mm] m [/mm] linear undabhängige Vektoren aus [mm] \IR^{\IN} [/mm].

c) Ist der [mm] \IR^{\IN} [/mm] endlich oder unendlichdimensional? Begründung.

d) Sind folgende Mengen Teilräume von [mm] \IR^{\IN}[/mm]?

[mm] N:= \{ (a_{n}) \in \IR^{\IN} | \limes_{n\rightarrow\infty} a_{n}=0 \}, E:= \{ (a_{n}) \in \IR^{\IN} | \limes_{n\rightarrow\infty} a_{n}=1 \}, D:= \{ (a_{n}) \in \IR^{\IN} | \limes_{n\rightarrow\infty} a_{n} divergent \} [/mm]

Ich danke für jede Hilfe, denn ich brauche jedes Pünktchen :o/

Lg

Christinchen

        
Bezug
Allg. Vektoräume, Teilräume: Ideen
Status: (Antwort) fertig Status 
Datum: 09:34 Do 02.12.2004
Autor: Hexe

Also zu a, da musst halt Abgeschlossenheit, assoziativität, Kommutativität, Null und Einselement und Distributivgesetze zeigen. Das ist halt ein rumgerechne mit den Definitionen.

b; würd ich mit Induktion machen m=1 [mm] (a_{n}):= [/mm] (1,000..)
c; folgt aus b; für jede Dim m-1 find ich m Vektoren die auch lin unabh. sind
d; Also E und D sind wohl nicht Abgeschlossen da musst halt schöne Beispielelemente finden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]