matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieAllg. Teilbarkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Allg. Teilbarkeit zeigen
Allg. Teilbarkeit zeigen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Teilbarkeit zeigen: Idee
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 08.03.2012
Autor: Omikron123

Aufgabe
1) [mm] (a-b)|(a^n-b^n) a,b\in\IZ [/mm] und [mm] n\in\IN [/mm]
2) Wenn [mm] 3\not|n [/mm] für ein [mm] n\in\IN [/mm] dann [mm] 3|(n^2+23) [/mm]

Wenn m|n dann gilt ja [mm] |m|\le{|n|}, [/mm] jetzt habe ich mir einfach gedacht ich zeige genau diese Ungleichung, ist aber plötzin weil ja aus [mm] |m|\le{|n|} [/mm] nicht die Teilbarkeit folgt.

Jetzt habe ich bei 1) keine Probleme. es muss eine ganze Zahl q existieren mit [mm] q*(a-b)=(a-b)*(a^{n-1}+...+b^{n-1}), [/mm] (a-b) kürzt sich weg und man sieht das die rechte Seite eine ganze Zahl ergibt, fertig.

Wie gehe ich da nun bei 2) vor?

        
Bezug
Allg. Teilbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 08.03.2012
Autor: angela.h.b.


>  2) Wenn [mm]3\not|n[/mm] für ein

Hallo,

Du kannst Dir überlegen, daß man n dann schreiben kann als n=3k+1 oder n=3k+2 für ein geeignetes [mm] k\in \IN. [/mm]

LG Angela


> dann [mm]3|(n^2+23)[/mm]





Bezug
                
Bezug
Allg. Teilbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Do 08.03.2012
Autor: Omikron123

Danke, jetzt ist alles klar.

Bei einem Bsp. rätsle ich gerade noch.

Wenn m|n, dann [mm] (a^m-b^b)|(a^n-b^n), a,b\in\IZ n\in\IN [/mm]

Also es gibt ein q mit: m*q=n Folgt nun daraus, dass für dasselbe q: [mm] (a^m-b^m)*q=(a^n-b^n), [/mm] oder habe hier nun eine andere ganze Zahl, z.B l ?

Bezug
                        
Bezug
Allg. Teilbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Do 08.03.2012
Autor: angela.h.b.


> Wenn m|n, dann [mm](a^m-b^b)|(a^n-b^n), a,b\in\IZ n\in\IN[/mm]

Hallo,

das soll wohl eher [mm] b^m [/mm] heißen.

>  
> Also es gibt ein q mit: m*q=n Folgt nun daraus, dass für
> dasselbe q: [mm](a^m-b^m)*q=(a^n-b^n),[/mm] oder habe hier nun eine
> andere ganze Zahl, z.B l ?

Zweiteres.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]