matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung(Allg.) Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - (Allg.) Beweis
(Allg.) Beweis < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Sa 01.12.2007
Autor: engel

Hallo!

Kann man eigentlich beweisen, ganz allgemein, dass wenn f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x) an dieser Stelle ein Maximum hat?

Das würde mich wirklich mal interessieren, auch wenne s kein Schulstoff ist.

        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 01.12.2007
Autor: rainerS

Hallo engel!

> Kann man eigentlich beweisen, ganz allgemein, dass wenn
> f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x)
> an dieser Stelle ein Maximum hat?

Ein Extremum, ja. Ob Maximum oder Minimum, hängt vom Vorzeichen von [mm]f(x_0)[/mm] ab.

Wenn f(x) ein Maximum hat, hat -f(x) ein Minimum und umgekehrt, aber andererseits ist das Quadrat beider Funktionen gleich: [mm](-f)^2(x)= =f^2(x)[/mm].

Beispiel:
[mm]f(x)=x^4-2*x^2-1[/mm] hat bei [mm]x_0=1[/mm] ein Maximum mit Funktionswert -1.
[mm]f^2(x)=(x^4-2*x^2-1)^2[/mm] hat ein Minimum.

Man kann's auch recht einfach formal nachrechnen.

Viele Grüße
   Rainer

Bezug
                
Bezug
(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 01.12.2007
Autor: engel

Hallo!

f(x) hat ein Maximum dann hat f²(x) an der gleichen stelle ein maximum.

f(x) = x²

f'(x) = 2x

Extremum bei x=0

f²(x) = [mm] x^4 [/mm]

f'(x) = 4x³

Extremum bei x=0

Habe ich das so beweisen?

Bezug
                        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Sa 01.12.2007
Autor: leduart

Hallo
Nein, 1. [mm] x^2 [/mm] hat bei [mm] x^2 [/mm] kein Max sondern ein Min!
2. ein Beispiel ist kein Beweis:
sonst wäre richtig: alle ungeraden Zahlen sind Primzahlen 3,5,7 stimmt, noch zufällig ne grössere 37 stimmt auch. Beweis fertig.!
Deine Rechnung kann höchstens dich auf die Idee bringen, dass das richtig ist!
Beweis in Worten:
Wenn f(x) ein Max hat UND da einen positiven Wert, sind alle Werte daneben kleiner und auch positiv. dann hat [mm] f^2(x) [/mm] da auch ein Max, denn wenn ne Zahl>0 gilt dass die größere Zahl das grössere Quadrat hat.
Wenn f ein Max hatbei x1, und f(x1)<0, dann hat [mm] f^2(x) [/mm] ein Min, überlkeg selbst warum.
Beweis mit Rechnen:
[mm] (f^2(x))'=2f(x)*f'(x) [/mm]  wenn f'(x)=0 folgt [mm] (f^2(x))'=0 [/mm] also auf jeden Fall hat [mm] f^2 [/mm] auch ne waagerechte Tangente!
Max: f''<0  [mm] (f^2(x))''=2f*f'' [/mm] +2f'^2 an der betrachteten Stelle x1 ist f'(x1)=0
also [mm] f^2(x1))''=2f(x1)f''(x1) [/mm] wenn f(x1)>0 hat [mm] f^2(x1))'' [/mm] dasselbe Vorzeichen wie f''(x1).
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]